精英家教网 > 高中数学 > 题目详情
7.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE•BD-AE•AC.

分析 连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD-AE•AC.

解答 证明:连接AD,因为AB为圆的直径
所以∠ADB=90°,
又EF⊥AB,∠AFE=90°,
则A,D,E,F四点共圆,
∴BD•BE=BA•BF,
又△ABC∽△AEF,
∴$\frac{AB}{AE}=\frac{AC}{AF}$,即AB•AF=AE•AC
∴BE•BD-AE•AC=BA•BF-AB•AF=AB•(BF-AF)=AB2

点评 本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知数列{an}是等差数列,且a3+a11=50,a4=13,则公差d=(  )
A.1B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,f(x)=acosπx+(1-x)sinπx,x∈[0,2],则f(x)所有的零点之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2AF=2AD,∠BAF=60°.
(1)求证:平面ADF⊥平面ABEF.
(2)求直线CF与平面ADF所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD折起到△PBD的位置,若三棱锥P-BCD的外接球的体积为$\frac{7\sqrt{7}π}{6}$,则二面角P-BD-C的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2bx-3b+1,在(-1,1)上存在零点,实数b的取值范围是($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=(2-a)x+a-2(1+lnx)
(1)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若对任意x∈(0,$\frac{1}{2}$),f(x)>0恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆E:x2+y2=1,点C(-1,0),D(0,-1),P(2,0),过P作直线l与圆E相交于A,B两点.
(1)若<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>,求直线l的斜率;
(2)记线段AB的中点为M,求|$\overrightarrow{MC}$+$\overrightarrow{MD}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过点A(0,1)且斜率为k的直线l与圆C:(x-3)2+(y-4)2=1交于M,N点.
(1)求k的取值范围;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=24,其中O为坐标原点,求k的值.

查看答案和解析>>

同步练习册答案