精英家教网 > 高中数学 > 题目详情

【题目】有一批材料可以建成80m的围墙,若用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的小矩形(如图所示),且围墙厚度不计,则围成的矩形的最大面积为(
A.200m2
B.360m2
C.400m2
D.480m2

【答案】C
【解析】解:设每个小矩形长为x,宽为y, 则有4x+3y=80,(0<x<20)
围成的矩形的面积S=3xy= [ ]2=400,当且仅当4x=3y=40时,等号成立,
即围成的矩形的最大面积为400m2
故选:C.
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断的单调性;

(2)求函数的零点的个数;

(3),若函数0,内有极值,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.

(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题中,正确命题的序号是 . ①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+ )的图象关于x= 成轴对称;
③已知 =(3,4), =﹣2,则向量 在向量 的方向上的投影是﹣
④如果函数f(x)=ax2﹣2x﹣3在区间(﹣∞,4)上是单调递减的,则实数a的取值范围是(0, ].

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一块大型的广告宣传版面,其形状如图所示的直角梯形.某厂家因产品宣传的需要,拟出资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形(点在曲线段上,点在线段上).已知,其中曲线段是以为顶点,为对称轴的抛物线的一部分.

(1)求线段,线段,曲线段所围成区域的面积;

(2)求厂家广告区域的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为得到函数 的图象,只需将函数y=sin2x的图象(
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fA(x)的定义域为A=[a,b),且fA(x)=( + ﹣1)2 +1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2 , (k+1)2),x2∈Ik+1=[(k+1)2 , (k+2)2),其中k是正整数,对一切正整数k,不等式 (x1)+ (x2))<m都有解,求m的取值范围;
(3)若对任意x1 , x2 , x3∈A,都有 为三边长构成三角形,求 的取值范围.

查看答案和解析>>

同步练习册答案