设函数f(x)=mx2-mx-1.
(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;
(2)对于x∈[1,3],f(x)<0恒成立,求m的取值范围.
分析:(1)利用函数恒成立问题的解决方法列出关于实数m的不等式是解决本题的关键,要注意对二次项次数的讨论,是二次不等式问题要注意二次不等式与二次函数之间的互相转化;
(2)函数在区间上恒成立问题,要转化为函数在给定区间上的最值问题,通过求解函数的最值,列出关于实数m的不等式,达到求解该题的目的.
解答:解:(1)要使mx
2-mx-1<0恒成立,
若m=0,显然-1<0;
若m≠0,则有
?-4<m<0.
∴-4<m≤0.
(2)当m=0时,f(x)=-1<0显然恒成立;当m≠0时,该函数的对称轴是x=
,f(x)在x∈[1,3]上是单调函数.
当m>0时,由于f(1)=-1<0,要使f(x)<0在x∈[1,3]上恒成立,只要f(3)<0即可.
即9m-3m-1<0得m<
,即0<m<
;
当m<0时,若△<0,由(1)知显然成立,此时-4<m<0;若△≥0,则m≤-4,
由于函数f(x)<0在x∈[1,3]上恒成立,只要f(1)<0即可,此时f(1)=-1<0显然成立,综上可知:m<
.
点评:本题考查函数恒成立问题的解决思路和方法,考查函数与不等式的综合问题,考查二次函数与二次不等式的互相转化问题,考查学生的转化与化归的思想和方法、解不等式的思想,考查学生分析问题解决问题的能力.