精英家教网 > 高中数学 > 题目详情
9.若z=cosθ+isinθ(i为虚数单位),则$θ=\frac{π}{2}+2kπ({k∈Z})$是z2=-1的充分不必要条件.

分析 当$θ=\frac{π}{2}+2kπ({k∈Z})$时,可得z2=-1,反之不成立.即可判断出.

解答 解:当$θ=\frac{π}{2}+2kπ({k∈Z})$时,z=cosθ+isinθ=i,
则z2=-1,
反之不成立.
例如θ=$\frac{3π}{2}+2kπ$(k∈Z)时,z2=-1.
∴$θ=\frac{π}{2}+2kπ({k∈Z})$是z2=-1的充分不必要条件.
故答案为:充分不必要.

点评 本题考查了三角函数求值、复数的运算法则、充要条件的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=x|x|+bx+c,给出下列四个命题:
①当x>0时,f(x)是增函数;
②f(x)的图象关于(0,c)对称;
③当b≠0时,方程f(x)=0必有三个实数根;
④当b=0时,方程f(x)=0有且只有一个实根.
其中正确的命题是②④(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是二次函数,若f(0)=0,且函数f(x+1)=f(x)+x+1.
(1)求f(x)的解析式;
(2)求f(x)在x∈[-1,2]时的值域
(3)令g(x)=f(x)-$\frac{1}{x}$,判断函数g(x)是否存在零点,若存在零点求出所有零点,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a和b均为非零实数,则下列不等式中恒成立的是 (  )
A.$\frac{{{a^2}+{b^2}}}{2}≥{(\frac{a+b}{2})^2}$B.$\frac{b}{a}+\frac{a}{b}≥2$C.$(a+b)(\frac{1}{a}+\frac{1}{b})≥4$D.$\frac{|a+b|}{2}≥\sqrt{\;|ab|}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.请在图中用阴影部分表示下面一个集合:((A∩B)∪(A∩C)∩(∁uB∪∁uC)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱柱ABC-A1B1C1的底是边长为1的正三角形,高AA1=1,在AB上取一点P,设△PA1C1与面A1B1C1所成的二面角为α,△PB1C1与面A1B1C1所成的二面角为β,则tan(α+β)的最小值是-$\frac{8\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线f(x)=$\frac{1}{3}$ax3-4lnx在点(1,f(1))处的切线l与x轴的交点为($\frac{4}{3}$,0).
(1)求f(x)的极小值;
(2)求证:对任意x∈(0,+∞),$\frac{{x}^{4}}{6}+\frac{2}{e}$>$\frac{xf(x)}{4}+\frac{x}{{e}^{x}}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与x轴交于点A,以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OPA=120°.则椭圆的离心率e=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案