精英家教网 > 高中数学 > 题目详情
12.设m是实数,$f(x)=m-\frac{2}{{{2^x}+1}}(x∈R)$,
(1)若函数f(x)为奇函数,求m的值;
(2)若函数f(x)为奇函数,且不等式f(kx2+1)+f(2x+1)≥0的解集是R.求k的取值范围.

分析 (1)令f(0)=0可解出m的值;
(2)根据函数的单调性和奇偶性将f(kx2+1)+f(2x+1)≥0转化为f(kx2+1)≥-f(2x+1)=f(-2x-1),即kx2+1≥-2x-1恒成立.

解答 解:(1)∵函数f(x)为奇函数,
∴f(0)=0
即m-1=0,
解得m=1.
(2)由(1)知$f(x)=1-\frac{2}{{{2^x}+1}}$,
∴f(x)在R上是增函数,
f(kx2+1)+f(2x+1)≥0的解集是R
即f(kx2+1)≥-f(2x+1)=f(-2x-1)恒成立.
∴kx2+1≥-2x-1恒成立.  
 即kx2+2x+2≥0恒成立.
∴△=4-8k≤0,
解得k≥$\frac{1}{2}$.
∴k的取值范围是$k≥\frac{1}{2}$.

点评 本题考查了奇函数的性质,函数奇偶性与单调性的应用,利用函数单调性转化为自变量的大小比较是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知A、B、C是△ABC的三内角,且满足2A,5B,2C成等差数列,则tanB的值为(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义max{a,b}表示实数a,b中的较大的数.已知数列{an}满足a1=a(a>0),a2=1,an+2=$\frac{2max\{{a}_{n+1,}2\}}{{a}_{n}}$(n∈N),若a2015=4a,记数列{an}的前n项和为Sn,则S2015的值为7254.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列四组函数中,表示同一函数的是③.
①$y=\sqrt{x^2}与y=\root{3}{x^3}$②y=1与y=x0
③y=2x+1与y=2t+1④$y=x与y={(\sqrt{x})^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程logax=x-2(0<a<1)的实数解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.近期世界各国军事演习频繁,某国一次军事演习中,空军同时出动了甲、乙、丙三架不同型号的战斗机对一目标进行轰炸,已知甲击中目标的概率是$\frac{3}{4}$;甲、丙同时轰炸一次,目标未被击中的概率是$\frac{1}{12}$;乙、丙同时轰炸一次都击中目标的概率是$\frac{1}{4}$.
(Ⅰ)求乙、丙各自击中目标的概率.
(Ⅱ)求目标被击中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式(各式均有意义)不正确的个数为(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,定点A(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)在椭圆上,F1,F2为椭圆的左、右焦点,定直线l的方程为x=-4,过椭圆上一点P作切线m与l交于T点,过P且垂直于直线m的直线n交F1F2于点M.
(1)求椭圆的方程;
(2)设椭圆的离心率为e,求证:$\frac{{F}_{1}M}{P{F}_{1}}$=e;
(3)证明PM为∠F1PF2的平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2-3x+2)
(1)若f(1)<2,求a的取值范围;
(2)若a=1,求满足$(\frac{1}{2})^{t}$<f(3)的t的取值范围.

查看答案和解析>>

同步练习册答案