精英家教网 > 高中数学 > 题目详情

【题目】已知,函数.

(1)求实数的值,使得为奇函数;

(2)若关于的方程有两个不同实数解,求的取值范围;

(3)若关于的不等式对任意恒成立,求的取值范围.

【答案】(1) ;(2) (3)

【解析】

(1)若为奇函数,则,进而可得实数的值,
2)若关于的方程有两个不同的实数解,即方程有两个不同实数解,解出两个实数根,然后满足对数的真数为正即可.
3)若关于的不等式对任意恒成立,即,对任意恒成立,打开绝对值,进而可得的取值范围.

(1) 为奇函数,则

所以

,所以

解得:

(2) 方程有两个不同实数解

即方程有两个不同实数解

即方程有两个不同实数解.

,则可以化为:

,即

时方程不可能有两个不等实数根,所以

,

根据对数的真数必须大于0,即

即:

,则

故方程满足条件的实数的范围是.

(3) 不等式对任意恒成立

即不等式对任意恒成立.

对任意恒成立.

所以对任意恒成立.

对任意恒成立.

(当且仅当时取等号).

上单调递增,所以当时,

所以

时,不等式对任意恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线的斜率为2的切线方程;

2)证明:

3)确定实数的取值范围,使得存在,,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U函数。

1)求证:函数上的“U函数;

2)设是(1)中的“U函数,若不等式对一切的恒成立,求实数的取值范围;

3)若函数是区间上的“U函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二届中国国际进口博览会于2019115日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:

男性

女性

合计

关注度极高

35

14

49

关注度一般

15

36

51

合计

50

50

100

1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;

2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.

附:.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,

1)求异面直线所成角的正切值;

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆C.

1)求椭圆C的标准方程;

2)若直线上C交于AB两点,是否存在l,使得点在以AB为直径的圆外.若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱平面的中点,.

1)求二面角的余弦值;

2)在线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点EF分别是棱上的动点,且.当三棱锥的体积取得最大值时,记二面角平面角分别为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中e为自然对数的底数.

1)当a0时,求函数f (x)的单调减区间;

2)已知函数f (x)的导函数f (x)有三个零点x1x2x3(x1 x2 x3).①求a的取值范围;②若m1m2(m1 m2)是函数f (x)的两个零点,证明:x1m1x1 1.

查看答案和解析>>

同步练习册答案