分析 若直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,且这两个交点所成的线段的中点P(0,1),则l过P点,且与l1,l2的交点与P的连线垂直,进而得到答案.
解答 解:∵直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,
且这两个交点所成的线段的中点P(0,1),
∴l过P点,且与l1,l2的交点与P的连线垂直,
由$\left\{\begin{array}{l}x-3y+10=0\\ 2x+y-8=0\end{array}\right.$得:$\left\{\begin{array}{l}x=2\\ y=4\end{array}\right.$,
∴l1,l2的交点Q的坐标为(2,4),
∴${k}_{PQ}=\frac{4-1}{2}$=$\frac{3}{2}$,
故l的斜率k=-$\frac{2}{3}$,
故l的方程为:y-1=-$\frac{2}{3}$x,即2x+3y-3=0,
故答案为:2x+3y-3=0
点评 本题考查的知识点是直线的点斜式方程,正确理解l过P点,且与l1,l2的交点与P的连线垂直,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [3,7] | B. | (3,7) | C. | [2,5] | D. | (2,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{a}$$+\overrightarrow{b}$ | B. | $\overrightarrow{a}$$-\overrightarrow{b}$ | C. | $\overrightarrow{b}$$-\overrightarrow{a}$ | D. | -$\overrightarrow{b}$$-\overrightarrow{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1-$\frac{1}{{2}^{n}}$ | B. | $\frac{1}{{2}^{n-3}}$ | C. | $\frac{1}{{2}^{n}}$ | D. | $\frac{n}{{2}^{n}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com