分析:(Ⅰ)依题意,可求得a1,a2,a3,由a1,a2,a3成等比数列即可求得t的值;
(Ⅱ)在(Ⅰ)的结论下,易求bn=n,an=4n-1,利用分组求和法即可求得数列{cn}的前n项和Tn.
解答:解:(Ⅰ)∵S
n=
(4n-t),
∴a
1=
(4-t),
∴a
2=S
2-a
1=
(4
2-t)-
(4-t)=4,
a
3=S
3-S
2=
(4
3-t)-
(4
2-t)=
(4
3-4
2)=16,
∵a
1,a
2,a
3成等比数列,
∴
a22=a
1•a
3,即16=
(4-t)×16,
解得t=1,
∴t=1时,S
n=
(4
n-1),
∴S
n+1=
(4
n+1-1),
∴a
n+1=S
n+1-S
n=
(4
n+1-4
n)=4
n,
∴
=4,即t=1时,数列{a
n}是公比为4的等比数列;
(Ⅱ)∵{a
n}是首项为1,公比为4的等比数列,
∴a
n=4
n-1,a
n+1=4
n,
∴b
n=1og
4a
n+1=
log44n=n,
∴c
n=a
n+b
n=4
n-1+n,
∴T
n=c
1+c
2+…+c
n=(1+4+4
2+…+4
n-1)+(1+2+..+n)
=
-
=
(4
n-1)-
=
-
-
.
点评:本题考查数列的求和,考查等比关系的确定,求得t=1是关键,考查分组求和,突出考查灵活转化与运算能力,属于中档题.