精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,动点P在底面ABCD内,且P到棱AD的距离与到对角线BC1的距离相等,则点P的轨迹是
 
考点:轨迹方程
专题:综合题
分析:作PM⊥AD、PE⊥BC、EF⊥BC1,连接PF,由线面垂直的判定定理、定义可得:PF是P到BC1的距离,以D为原点,AD所在直线为x轴,DC所在直线为y轴建立直角坐标系,利用条件建立方程,化简后判断出点P的轨迹.
解答: 解:假设正方体边长为1,
作PM⊥AD、PE⊥BC、EF⊥BC1,连接PF,
因为PE⊥CC1,BC∩CC1=C,所以PE⊥平面BCB1C1
则PE⊥BC1,又EF⊥BC1,PE∩EF=E,
所以BC1⊥平面PEF,则BC1⊥PF,
所以PF是P到对角线BC1的距离,
以D为原点,AD所在直线为x轴,DC所在直线为y轴建立直角坐标系;
设任意一点P(x,y),到直线AD距离为|y|,到BC的距离PE=1-y,
在RT△BEF中,BE=1-x,EF=
2
2
(1-x)

在RT△PEF中,PF=
|PE|2+|EF|2
=
(1-y)2+[
2
2
(1-x)]
2

因为P到棱AD的距离与到对角线BC1的距离相等,
所以|y|=
(1-y)2+[
2
2
(1-x)]
2

化简得,(x-1)2=-4y+2(y
1
2
),
所以点P的轨迹是抛物线,
故答案为:抛物线.
点评:本题考查轨迹方程以及轨迹,线面垂直的判定定理、定义,考查学生分析解决问题的能力,确定轨迹方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若角A为三角形ABC的一个内角,且sinA+cosA=
11
25
,则这个三角形的形状为(  )
A、锐角三角形
B、钝角三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

sinα=
5
5
,则sin2α-cos2α的值为(  )
A、-
1
5
B、-
3
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},集合B={x|x>-1},则A∩B=(  )
A、(1,2)B、{2}
C、{-1,2}D、{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
3
-tan
4
+
3
4
tan2
π
6
+sin
11π
6
+cos2
6
+sin
2
的值等于(  )
A、-1
B、0
C、1
D、-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是抛物线y2=16x的焦点,A,B,C在抛物线上,且横坐标分别是x1,x2,x3,则下列说法正确的有
 

①若
FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|=24;
②若x1+x3=2x2,则|
FA
|,|
FB
|,|
FC
|成等差数列;
③若直线AB经过点F,则以AB为直径的圆与直线x=-4相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知约束条件
x≤2
y≤2
x+y≥c
,且目标函数z=x-2y的最大值是4,则z的最小值是(  )
A、-2B、-7C、-3D、-5

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,棱长PD=a,底面ABCD是边长为a的菱形,点M为PB中点
(1)若∠BCP=90°,证明:MD⊥PC;
(2)若∠BCD=90°,∠PDA=PDC=60°,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某辆汽车行驶的路程x千米与用油量y升,满足函数y=0.3x,试求该车行驶100千米、200千米时用油量分别为多少升?

查看答案和解析>>

同步练习册答案