精英家教网 > 高中数学 > 题目详情
2.若x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ 2x-y-2≥0\end{array}\right.$,则z=x+2y的最小值为2.

分析 画出约束条件的可行域,利用目标函数以及可行域,判断最值点的位置,然后求解最小值即可.

解答 解:因为线性约束条件所决定的可行域为非封闭区域且目标函数为线性的,
最值一定在边界点处取得.
分别将点$(\frac{4}{3},\frac{2}{3}),(2,0)$代入目标函数,
求得:${z_1}=\frac{4}{3}+2×\frac{2}{3}=\frac{8}{3},{z_2}=2+2×0=0$,所以最小值为2.

故答案为:2.

点评 此题考查了简单的线性规划,考查目标函数的几何意义,体现了数形结合的数学思想方法及数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,在圆C中,点A,B在圆上,已知|AB|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值(  )
A.1B.2C.4D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,Sn=2an-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,记数列{cn}的前n项和为Tn,求 Tn
(Ⅲ)设dn=nan,记数列{dn}的前n项和为Gn,求Gn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$满足3|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,<$\overrightarrow{m}$,$\overrightarrow{n}$>=60°,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$)则实数t的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若公差为2的等差数列{an}的前9项和为81,则a9=(  )
A.1B.9C.17D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,曲线C1:ρ=2cosθ,曲线 ${C_2}:ρ{sin^2}θ=4cosθ$.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺次为P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,该几何体四个面中,面积最大的面积是(  )
A.8B.10C.6$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴交于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形
(1)求C的方程
(2)延长AF交抛物线于点E,过点E作抛物线的切线l1,求证:l1∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线y2-2x2=8的渐近线方程为$y=±\sqrt{2}x$.

查看答案和解析>>

同步练习册答案