精英家教网 > 高中数学 > 题目详情
已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.
【答案】分析:(1)直线L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,显然过直线2x+y-7=0 及直线x+y-4=0的交点A,由 解得交点A的坐标.
(2)把 圆C的方程化为标准形式,求出圆心C的坐标和半径,要使直线L被圆C截得的线段长度最小,需心C到直线L的距离d最大,d的最大为CA线段的长度.此时,CA和直线L垂直,
斜率之积等于-1,解方程求得m的值.
解答:解:(1)直线L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,显然过直线2x+y-7=0 及直线x+y-4=0的交点A.
 解得交点A的坐标为(3,1),
故直线L:(2m+1)x+(m+1)y-7m-4=0经过定点A(3,1).
(2)圆C:x2+y2-2x-4y-20=0 即 (x-1)2+(y-2)2=25,表示以C(1,2)为圆心,以5为半径的圆.
设圆心C到直线L的距离为d,要使直线L被圆C截得的线段长度最小,需d最大.由题意可知,d的最大为CA线段的长度.
由两点间的距离公式可得 CA==
此时,CA和直线L垂直,斜率之积等于-1,
•()=-1,解得 m=-
点评:本题主要考查直线过定点问题,直线和圆的位置关系的应用,判断圆心C到直线L的距离d的最大为CA线段的长度,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:(2m+1)x+(m+1)y=7m+4,圆C:(x-1)2+(y-2)2=25.
(1)判断直线l和圆C的位置关系;
(2)若直线l和圆C相交,求相交弦长最小时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆一中高二(上)10月月考数学试卷(文科)(解析版) 题型:解答题

已知直线l:(2m+1)x+(m+1)y=7m+4,圆C:(x-1)2+(y-2)2=25.
(1)判断直线l和圆C的位置关系;
(2)若直线l和圆C相交,求相交弦长最小时m的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省安阳市汤阴一中高二(上)月考数学试卷(理科)(解析版) 题型:解答题

已知直线L:(2m+1)x+(m+1)y-7m-4=0,圆C:x2+y2-2x-4y-20=0.
(1)求证:直线L过定点;
(2)求直线L被圆C截得的线段最小长度,并求此时对应的m的值.

查看答案和解析>>

同步练习册答案