精英家教网 > 高中数学 > 题目详情
8.在正方体ABCD-A1B1C1D1
(1)二面角A-B1C-A1的大小 
(2)平面A1DC1平面A1D1DA所成角的正切值.

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由此利用向量法能求出二面角A-B1C-A1的大小.
(2)求出平面DA1C1的法向量和平面A1D1DA的法向量,由此利用向量法能求出平面A1DC1平面A1D1DA所成角的正切值.

解答 解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为1,
则A(1,0,0),B1(1,1,1),C(0,1,0),A1(1,0,1),
$\overrightarrow{CA}$=(1,-1,0),$\overrightarrow{C{B}_{1}}$=(1,0,1),$\overrightarrow{C{A}_{1}}$=(1,-1,1),
设平面CAB1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=x-y=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
设平面CA1B1的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{C{A}_{1}}=a-b+c=0}\\{\overrightarrow{m}•\overrightarrow{C{B}_{1}}=a+c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,-1),
设二面角A-B1C-A1的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{1+0+1}{\sqrt{3}×\sqrt{2}}$|=$\frac{\sqrt{6}}{3}$,
∴θ=arccos$\frac{\sqrt{6}}{3}$.
∴二面角A-B1C-A1的大小为arccos$\frac{\sqrt{6}}{3}$.
(2)C1=(0,1,1),$\overrightarrow{D{A}_{1}}$=(1,0,1),$\overrightarrow{D{C}_{1}}$=(0,1,1),
设平面DA1C1的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{D{A}_{1}}={x}_{1}+{z}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{D{C}_{1}}={y}_{1}+{z}_{1}=0}\end{array}\right.$,取x1=-1,得$\overrightarrow{p}$=(-1,-1,1),
又平面A1D1DA的法向量$\overrightarrow{q}$=(0,1,0),
设平面A1DC1平面A1D1DA所成角的平面角为α,
则cosα=|cos<$\overrightarrow{p},\overrightarrow{q}$>|=|$\frac{\overrightarrow{p}•\overrightarrow{q}}{|\overrightarrow{p}|•|\overrightarrow{q}|}$|=|$\frac{-1}{\sqrt{3}}$|=$\frac{\sqrt{3}}{3}$,
∴tanα=$\sqrt{2}$,
∴平面A1DC1平面A1D1DA所成角的正切值为$\sqrt{2}$.

点评 本题考查二面角的求法,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,△ABC内接于圆O,AE平分∠BAC交BC于点D,连接BE.
(1)求证:$\frac{AE}{AC}$=$\frac{BE}{DC}$;
(2)若△ABC的面积S=$\frac{1}{2}$AD•AE,求证:BA⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个顶点为B(0,4),离心率e=$\frac{{\sqrt{5}}}{5}$,直线l交椭圆于M、N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果MN的中点为Q,且$\overrightarrow{BF}$=2$\overrightarrow{FQ}$,(F为椭圆的右焦点),求直线l方程的一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.
(Ⅰ)证明:CD是圆O的切线;
(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.四棱锥P-ABCD中底面ABCD为直角梯形,AD∥BC,∠ADC=90°,面PAD⊥面ABCD,Q为AD的中点,PA=PD=2,AD=2BC=2,CD=$\sqrt{3}$.
①求证:QB⊥面PAD;
②求二面角Q-PA-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在三棱柱ABC-A1B1C1中,∠ACB=90°,AA1⊥平面ABC,AC=BC=CC1,M,N分别为A1B,B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成的角的大小;
(3)设D是棱AA1上的动点,求二面角A-BC-D的最大值,并指出此时点D的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:如图,在△ABC中,AC=13,BC=14,AB=15,求△ABC外接圆⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.${∫}_{0}^{\frac{π}{2}}$(cosx-sinx)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,焦距为2,过F1作直线与椭圆交于B,D两点,且△F2BD的周长为4$\sqrt{3}$.
(1)求椭圆方程;
(2)过F2作垂直于BD的直线交椭圆于A,C,设逆时针连接四个交点所得四边形的面积为S,求S的取值范围.

查看答案和解析>>

同步练习册答案