精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知,若函数在区间
的最大值为,最小值为,令.
(1)求的函数表达式;
(2)判断函数在区间上的单调性,并求出的最小值.

解:(1)的图像为开口向上的抛物线,且对称
轴为     ………2分
有最小值.      ………3分
,即时,有最大值;………5分
,即时,有最大值;………7分
 
  ………8分
(3)设,则
上是减函数.………10分

上是增函数.………12分
.∴当时,有最小值。………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(理数)(12分)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5元/千克时,每日可售出该商品11千克
(Ⅰ) 求的值;
(Ⅱ) 若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题11分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,求出S与t之间的函数关系式和相应的自变量t的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象与x轴有两个不同的公共点,且,当时,恒有.
(1)当时,求不等式的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且,求a的值;
(3)若,且对所有恒成立,求正实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某地方政府为地方电子工业发展,决定对某一进口电子产品征收附加税。已知这种电子产品国内市场零售价为每件250元,每年可销售40万件,若政府征收附加税率为t元时,则每年减少y万件。
(1)收入表示为征收附加税率的函数;
(2)在该项经营中每年征收附加税金不低于600万元,那么附加税率应控制在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为( )

A.(1,0)B.(2,8)
C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设曲线在点处的切线与直线垂直,则(   )

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)设,若函数在区间上存在极值,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在区间上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上单调,求的取值范围。

查看答案和解析>>

同步练习册答案