精英家教网 > 高中数学 > 题目详情
(2013•汕头二模)已知动点P(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ(λ≠0)
(1)求动点P的轨迹C的方程;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=2时,对于平面上的定点E(-
3
,0),F(
3
,0)
,试探究轨迹C上是否存在点P,使得∠EPF=120°,若存在,求出点P的坐标;若不存在,说明理由.
分析:(1)写出过PM与PN的直线的斜率,直接利用斜率之积等于常数λ(λ≠0)求出动点P的轨迹C的方程;
(2)根据λ的不同取值,结合圆锥曲线的标准方程逐一讨论轨迹C的形状;
(3)当λ=2时,曲线C是焦点在x轴上的双曲线,且判出E,F恰为双曲线的两个焦点,假设点P存在,结合正余弦定理,利用三角形PEF的面积相等求解P点的坐标.
解答:解、(1)由题设可知;PM,PN的斜率存在且不为0,
则由kPM•kPN=λ得:
y
x+1
y
x-1
,即x2-
y2
λ
=1  (y≠0)

所以动点P的轨迹C的方程为x2-
y2
λ
=1  (y≠0)

(2)讨论如下:
①当λ>0时,轨迹C为中心在原点,焦点在x 轴上的双曲线(除去顶点)
②当-1<λ<0时,轨迹C为中心在原点,焦点在x 轴上的椭圆(除去长轴两个端点)
③当λ=-1时,轨迹C为以原点为圆心,1为半径的圆(除去点(-1,0),(1,0))
④当λ<-1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴两个端点);
(3)当λ=2时,轨迹C的方程为x2-
y2
2
=1  (y≠0)
,显然定点E、F为其左右焦点.
假设存在这样的点P,使得∠EPF=120°,记∠EPF=θ,
设PE=m,PF=n,EF=2
3

那么在△EPF中:由|m-n|=2,得m2+n2-2mn=4,
(2
3
)2=m2+n2-2mncosθ

两式联立得:2mn(1-cosθ)=8,所以mn=
4
1-cosθ
=
4
1-cos120°
=
8
3


S△EPF=
1
2
mnsin120°=
1
2
×
8
3
×
3
2
=
2
3
3
 
再设P(xP,yP
又因为S△EPF=
1
2
|EF||yP|=
1
2
×2
3
|yP|=
2
3
3

所以|yP|=
2
3
yP
2
3
代入椭圆的方程可得:xP2-
2
3
)2
2
=1

所以xP
11
3
,所以满足题意的点P有四个,坐标分别为:(
11
3
2
3
)
(-
11
3
2
3
)
(
11
3
,-
2
3
)
(-
11
3
,-
2
3
)
点评:本题考查了轨迹方程,考查了直线和圆的位置关系,训练了分类讨论的数学思想方法,涉及圆锥曲线上的一点和圆锥曲线两个焦点连线的问题,结合正余弦定理及圆锥曲线的定义进行求解是常用的方法,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕头二模)已知i为虚数单位,若复数(1+ai)(2+i)是纯虚数,则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)执行框图,若输出结果为
1
2
,则输入的实数x的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)数列{an}的首项为3,{bn}为等差数列,已知b1=2,b3=6,bn=an+l-an(n∈N*),则a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽
4
2
4
2
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)已知集合A={1,2},B={x∈Z|x2-5x+4<0},则A∩B=(  )

查看答案和解析>>

同步练习册答案