精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是(
A.f(x)=
B.f(x)=x2+1
C.f(x)=x
D.f(x)=2x

【答案】A
【解析】解:在A 中,f(x)= 是偶函数,在区间(﹣∞,0)上单调递增,故A正确;
在B中,f(x)=x2+1是偶函数,在区间(﹣∞,0)上单调递减,故B错误;
在C中,f(x)=x是奇函数,在(﹣∞,0)上是增函数,故C错误;
在D中,f(x)=2x是非奇非偶函数,在(﹣∞,0)上是增函数,故D错误.
故选:A.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间上单调递增,求的取值范围;

(2)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的方程为,在以原点为极点, 轴的非负关轴为极轴的极坐标系中,直线的极坐标方程为.

(1)将上的所有点的横坐标和纵坐标分别伸长到原来的2倍和倍后得到曲线,求曲线的参数方程;

(2)若分别为曲线与直线的两个动点,求的最小值以及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出直线的极坐标方程与曲线的直角坐标方程;

(2)已知与直线平行的直线过点,且与曲线交于两点,试求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,该四棱锥外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中
①函数f(x)=( x的递减区间是(﹣∞,+∞)
②已知函数f(x)的定义域为(0,1),则函数f(x+1)的定义域为(1,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[7585)

[8595)

[95105)

[105115)

[115125)

频数

6

26

38

22

8

(1)作出这些数据的频率分布直方图

(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表)

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学考试试题中共有道选择题,每道选择题都有个选项,其中仅有一个是正确的.评分标准规定:“每题只选项,答对得分,不答或答错得分.”某考生每道题都给了一个答案,已确定有道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:

(Ⅰ)得分的概率;

(Ⅱ)所得分数的数学期望.

查看答案和解析>>

同步练习册答案