精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=lg[(m2-1)x2-(1-m)x+1]
(1)若函数的定义域为R,求实数m的取值范围;
(2)若函数的值域为R,求实数m的取值范围.

分析 (1)若函数的定义域为R,则(m2-1)x2-(1-m)x+1>0对x∈R恒成立,进而可得实数m的取值范围;
(2)若函数的值域为R,则g(x)=(m2-1)x2-(1-m)x+1的值域包含(0,+∞),进而可得实数m的取值范围.

解答 解:(1)由题知(m2-1)x2-(1-m)x+1>0对x∈R恒成立.
(I)当m2-1=0时,若m=1,有1>0恒成立,符合题意:
若m=-1,有$x<\frac{1}{2}$,不合题意.
(II)当m2-1≠0即m≠±1时,
有$\left\{\begin{array}{l}{m^2}-1>0⇒m>1或m<-1\\△={(1-m)^2}-4({m^2}-1)<0⇒m>1或m<-\frac{5}{3}\end{array}\right.$解得:m>1或$m<-\frac{5}{3}$;
∴由(I)(II)可知$m∈(-∞,-\frac{5}{3})∪[1,+∞)$.
(2)由题意,g(x)=(m2-1)x2-(1-m)x+1的值域包含(0,+∞),
(I)当m2-1=0时,若m=1,有g(x)=1,不合题意;
若m=-1,则g(x)=-2x+1,符合题意.
(II)当m2-1≠0即m≠±1时
有$\left\{\begin{array}{l}{m^2}-1>0\\△≥0\end{array}\right.$解得:$-\frac{5}{3}≤m<-1$
∴由(I)(II)可知$m∈[-\frac{5}{3},-1]$.

点评 本题考查的知识点是函数恒成立问题,二次函数的图象和性质,对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在(3-$\sqrt{x}$)n(n≥2且n∈N)展开式中x的系数为an,则$\frac{3}{{a}_{2}}$+$\frac{{3}^{2}}{{a}_{3}}$+$\frac{{3}^{3}}{{a}_{4}}$+…+$\frac{{3}^{2015}}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2015}{672}$D.$\frac{2015}{336}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1,若AB=2,AC=$\sqrt{3}$,BC=$\sqrt{7}$,则下列结论正确的是(  )
A.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
B.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
C.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$
D.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{2}sin(2x+\frac{π}{4})+2$
(1)求f(x)的最小正周期和单调递增区间;
(2)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{4})$在幂函数y=f(x)的图象上,则f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=0且f(x+1)=f(x)+x+1,
(1)求f(x)的表达
(2)求函数f(x)在[t,t+1]上的最小值g(t)
(3)若g(t)+m≥0对t∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,A、B是两个非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x^2}}$,x,y∈R},B={y|y=2x,x>0},则A*B=(  )
A.[0,+∞)B.[0,1]∪(3,+∞)C.[0,1)∪[3,+∞)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知cosα=-$\frac{4}{5}$,并且α是第二象限的角
(1)求sinα和tanα的值;
(2)求$\frac{2sinα+3cosα}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求数列{bn}的通项公式;
(2)令${c_n}={e^{-{b_n}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

同步练习册答案