精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

(Ⅰ)若,求函数的极值;

(Ⅱ)设.上恒成立,求实数的取值范围.

【答案】(Ⅰ)极小值0,无极大值;(Ⅱ).

【解析】

,令得到的单调性即可得到极值;

上恒成立,可构造函数,令,分讨论即可.

时,

解得(舍去).

时,

上单调递减;

时,

上单调递增,的极小值为,无极大值.

上恒成立,

上恒成立.

构造函数

.

可知恒成立.

上单调递增.

.

时,

上恒成立,即上恒成立.

上恒成立,满足条件.

时,

存在唯一的使得.

时,

单调递减.

,这与矛盾.

可得(舍去)

易知上单调递减.

上恒成立,

上恒成立.

上单调递减.

上恒成立,这与矛盾.

综上,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,点在准线上的投影为,若是抛物线上一点,且.

1)证明:直线经过的中点

2)求面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点

1)求曲线的直角坐标方程;

2)若点AB为曲线上的两个点且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如图,已知椭圆E的左、右顶点分别为,上、下顶点分别为.设直线倾斜角的余弦值为,圆与以线段为直径的圆关于直线对称.

1)求椭圆E的离心率;

2)判断直线与圆的位置关系,并说明理由;

3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).

年份

年份代号

年利润(单位:亿元)

)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;

)当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有100多年.龙眼干的级别按直径的大小分为四个等级(如下表).

级别

三级品

二级品

一级品

特级品

某商家为了解某农场一批龙眼干的质量情况,随机抽取了100个龙眼干作为样本(直径分布在区间),统计得到这些龙眼干的直径的频数分布表如下:

频数

1

29

7

用分层抽样的方法从样本的一级品和特级品中抽取6个,其中一级品有2.

1)求的值,并估计这批龙眼干中特级品的比例;

2)已知样本中的100个龙眼干约500克,该农场有500千克龙眼干待出售,商家提出两种收购方案:

方案:以60/千克收购;

方案:以级别分装收购,每袋100个,特级品40/袋、一级品30/袋、二级品20/袋、三级品10/.

用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.

1)估计这100人体重数据的平均值和样本方差(结果取整数,同一组中的数据用该组区间的中点值作代表)

2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;

3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等边的边长为,点分别是上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接(如图(2)).

(1)求证:平面

(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案