精英家教网 > 高中数学 > 题目详情
定义为向量到向量的一个矩阵变换,其中O是坐标原点,n∈N*.已知,则的坐标为   
【答案】分析:由题意已知矩阵,然后求出A2009再代入A2009B进行计算即可求出的坐标.
解答:解:,B=
AA=
A3=
依此类推
A2009=
∴A2009B==
的坐标为(2,4018)
故答案为:(2,4018)
点评:此部分是高中新增的内容,但不是很难,套用公式即可解答,主要考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:学习高手必修四数学苏教版 苏教版 题型:044

材料:采访零向量

  W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?

  零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.

  W:好的,那就开始吧!你的名字有什么特殊的含义吗?

  零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.

  W:你与其他向量有什么共同之处呢?

  零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.

  W:你有哪些值得骄傲的特殊荣耀呢?

  零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.

  W:你有如此多的荣耀,那么是否还有烦恼之事呢?

  零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.

  W:OK!采访就到这里吧,非常感谢你的合作,再见!

  零向量:Bye!

阅读上面的材料回答下面问题.

应用零向量时应注意哪些问题?

查看答案和解析>>

科目:高中数学 来源: 题型:044

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>

同步练习册答案