精英家教网 > 高中数学 > 题目详情
(2010•昆明模拟)若0<x<
π
2
,则函数y=
sin2x+2cos2x
sin2x
的最小值为
2
2
分析:由0<x<
π
2
,知y=
sin2x+2cos2x
sin2x
=
sin2x+2cos2x
2sinxcosx
=
tanx
2
+
2
tanx
,利用均值不等式能求出最小值.
解答:解:∵0<x<
π
2
,∴cosx≠0,tanx>0,
∴y=
sin2x+2cos2x
sin2x
=
sin2x+2cos2x
2sinxcosx

=
tan2x+2
2tanx
=
tanx
2
+
1
tanx

≥2
tanx
2
×
1
tanx

=
2

当且仅当
tanx
2
=
2
tanx
,即tanx=2时,取等号.
∴函数y=
sin2x+2cos2x
sin2x
的最小值为
2

故答案为:
2
点评:本题考查三角函数的恒等变换及其化简求值,解题时要认真审题,注意均值不等式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•昆明模拟)在平行六面体ABCD-A1B1C1D1中,点A1在底面ABCD内的射影恰好为点B,若AB=AD=
1
2
AA1,∠BAD=60°
,则异面直线A1B与B1C所成角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•昆明模拟)若复数z满足(1+i)2
.
z
=4
,则z为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•昆明模拟)不等式|x|>
1
x
的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•昆明模拟)函数y=3sin2x的图象向右平移φ个单位(φ>0)得到的图象恰好关于直线x=
π
6
对称,则?的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•昆明模拟)如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G.现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有(  )

查看答案和解析>>

同步练习册答案