精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,的中点.

(I)若上的一点,且与直线垂直,求的值;

(Ⅱ)在(I)的条件下,设异面直线所成的角为45°,求直线与平面成角的正弦值.

【答案】(Ⅰ)见证明;(Ⅱ)

【解析】

(Ⅰ)取中点,连接,证明 ,即可说明,由底面为正方形,可求得;

(Ⅱ)以为坐标原点,分别以为x轴、y轴、z轴,建立空间直角坐标系,求得各点的坐标,以及平面的法向量为,根据线面所成角的正弦值的公式即可求解。

(Ⅰ)证明:取中点,连接,有,

因为,所以,

又因为三棱柱为直三棱柱,

所以,

又因为,

所以

又因为

所以

又因为,平面,平面,

所以,又因为平面,

所以,

因为

所以,

连接,设,因为为正方形,

所以,又因为

所以,

又因为的中点,

所以的中点,

所以.

(Ⅱ)

如图以为坐标原点,分别以为x轴、y轴、z轴,建立空间直角坐标系,

,由(Ⅰ)可知

所以

所以,

所以,

所以

设平面的法向量为

的一组解为

所以

所以直线与平面成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下:

(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;

(2)在参加问卷调查的12名学生中,从来自三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费基准保费与道路交通事故相联系的浮动比率),具体情况如下表:

交强险浮动因素和浮动费率比率表

类别

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮

上两个年度未发生有责任道路交通事故

下浮

上三个及以上年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮

上一个年度发生有责任道路交通死亡事故

上浮

为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:

类型

数量

20

10

10

38

20

2

若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为(

A.aB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间内是单调递增函数,求实数a的取值范围;

2)若函数有两个极值点,且,求证:.(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,ADC=90°,CDAB,AB=4,AD=CD=2.将ADC沿AC折起,使平面ADC平面ABC,得到几何体D﹣ABC,如图2所示.

(Ⅰ)求证:BC平面ACD;

(Ⅱ)求几何体D﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;

2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的平均数和众数;

2)将表示为的函数;

3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.

(1)求一名顾客在一次摸奖活动中获得元的概率;

(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案