精英家教网 > 高中数学 > 题目详情
3.△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c).那么A-2B=0.

分析 先利用正弦定理把题设等式中的边的问题转化成角的正弦,利用二倍角公式化简整理求得sin(A+B)sin(A-B)=sinBsin(A+B),进而推断出sin(A-B)=sinB.求得A-B=B,即可得出结论.

解答 解:由正弦定理可知,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,
得sin2A=sinB(sinB+sinC)
∴sin2A-sin2B=sinBsinC
∴$\frac{1}{2}$(cos2B-cos2A)=sinBsin(A+B)
∴sin(A+B)sin(A-B)=sinBsin(A+B),
因为A、B、C为三角形的三内角,
所以sin(A+B)≠0.所以sin(A-B)=sinB.
所以只能有A-B=B,即A-2B=0.
故答案为0.

点评 本题主要考查了正弦定理了的应用.研究三角形问题一般有两种思路.一是边化角,二是角化边.而正弦定理和余弦定理是完成这种转化的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在空间直角坐标系中,一定点到三个坐标平面的距离都是2,那么该定点到原点的距离是(  )
A.$\sqrt{6}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用“长方体ABCD-A1B1C1D1中,四面体A1BC1D”的特点,求得四面体PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面积为(  )
A.14πB.16πC.13πD.15π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中:
(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.
(2)若点(1,1)在圆x2+y2+mx-y+4=0外,则m的取值范围是(-5,+∞);
(3)若曲线$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示双曲线,则k的取值范围是(1,+∞]∪(-∞,-4];
(4)将函数y=cos(2x-$\frac{π}{3}$)(x∈R)的图象向左平移$\frac{π}{3}$个单位,得到函数y=cos2x的图象.
(5)已知双曲线方程为x2-$\frac{{y}^{2}}{2}$=1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.正确的是(2),(5)(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x•ex,则f′(1)=2e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,函数f(x)=$\left\{\begin{array}{l}|2x+1|,x<1\\ ln(x-1),x>1\end{array}$,g(x)=x2-2x+2m2-1,若函数y=f(g(x))-m有6个零点则实数m的取值范围是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数$f(x)=sin(2x-\frac{π}{2}),x∈R$,则f(x)是(  )
A.最小正周期为π的奇函数B.最小正周期为$\frac{π}{2}$的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列表达式的值
(1)$\frac{({a}^{\frac{2}{3}}•{b}^{-1})^{-\frac{1}{2}}•{a}^{\frac{1}{2}}•{b}^{\frac{1}{3}}}{\root{6}{a•{b}^{5}}}$(a>0,b>0)
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\sqrt{-{x^2}+2x+8}$的定义域为集合A,函数g(x)=lg(-x2+6x+m)的定义域为集合B.
(1)当m=-5时,求A∩∁UB;
(2)若A∩B={x|-1<x≤4},求实数m的值.

查看答案和解析>>

同步练习册答案