【题目】设点P为有公共焦点F1 , F2的椭圆和双曲线的一个交点,且cos∠F1PF2= ,椭圆的离心率为e1 , 双曲线的离心率为e2 , 若e2=2e1 , 则e1=( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4 .
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线 =1(a>0,b>0)的左右焦点分别为F1 , F2 , |F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 满足Sn=2﹣an(n∈N*).数列{bn}满足(2n﹣1)bn+1﹣(2n+1)bn=0(n∈N*),且b1=1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn , 求数列{cn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点O为△ABC的外心,角A,B,C的对边分别满足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
(Ⅱ)若 = ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=2,b2+c2﹣bc=4,则△ABC的面积的取值范围是( )
A.( , ]
B.(0, ]
C.( , ]
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(1)求AC的长;
(2)试比较BE与EF的长度关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数 ,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | ||||||||||
乙 |
根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com