精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.
(Ⅰ)若c=-a2,且|x1-x2|=2,求b的最大值;
(Ⅱ)设g(x)=f′(x)+x,若0<x1<x2
13a
,且x∈(0,x1),证明:x<g(x)<x1
分析:(Ⅰ)依题意可得f′(x)=3ax2+2bx-a2,x1、x2是方程3ax2+2bx-a2=0的两根,利用韦达定理将|x1-x2|=2,整理为:
得b2=3a2(3-a),设h(a)=-3a3+9a2,则h′(a)=-9a2+18a;由h′(a)>0与h′(a)<0,可求得h(a)在(0,3]上的极大值,从而得到b的最大值;
(Ⅱ)一方面,由x1、x2是方程f′(x)=0的两根,g(x)=f′(x)+x⇒f′(x)=g(x)-x=3a(x-x1)(x-x2)>0⇒g(x)>x;另一方面,0<x<x1x2
1
3a
,x1-g(x)=x1-[x+f′(x)]=x1-x-3a(x-x1)(x-x2)=(x1-x)[1+3a(x-x2)]>0,于是得证.
解答:解:(Ⅰ)∵c=-a2,∴f′(x)=3ax2+2bx-a2
∵x1、x2是方程3ax2+2bx-a2=0的两根,a>0,
∴x1+x2=-
2b
3a
,x1x2=-
a
3

∵|x1-x2|=2,
(x1+x22-4x1x2=4,即(-
2b
3a
)
2
-4(-
a
3
)=4,整理得b2=3a2(3-a),
∵b2≥0,
∴0<a≤3;
设h(a)=-3a3+9a2,则h′(a)=-9a2+18a;
由h′(a)>0,得0<a<2;由h′(a)<0,得a>2.
∴h(a)=-3a3+9a2在区间(0,2)上是增函数,在区间(2,3)上是减函数,
∴当a=2时,h(a)有极大值12,
∴h(a)在(0,3]上的最大值是12,从而b的最大值是2
3
…3分
(Ⅱ)由g(x)=f′(x)+x,得f′(x)=g(x)-x,
∵x1、x2是方程f′(x)=0的两根,
∴f′(x)=g(x)-x=3a(x-x1)(x-x2),
当x∈(0,x1)时,由于x1<x2,故(x-x1)(x-x2)>0,
又a>0,故g(x)-x=3a(x-x1)(x-x2)>0,即g(x)>x;…7分
又x1-g(x)=x1-[x+f′(x)]=x1-x-3a(x-x1)(x-x2)=(x1-x)[1+3a(x-x2)],
0<x<x1x2
1
3a

∴x1-x>0,[1+3a(x-x2)]=1+3ax-3ax2>1-3ax2>0,
∴g(x)<x1;…10分
综上所述:x<g(x)<x1
点评:本题考查利用导数研究函数的极值,难点在于(Ⅱ)的证明,须用作差发分两步分别证明g(x)>x与g(x)<x1,考查综合分析与解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案