【题目】如图,在长方体中,、分别是棱,
上的点,,
(1) 求异面直线与所成角的余弦值;
(2) 证明平面
(3) 求二面角的正弦值.
【答案】(1),(2)见解析(3)
【解析】
方法一:如图所示,建立空间直角坐标系,
点A为坐标原点,设,依题意得,
,,
(1) 解:易得,
于是
所以异面直线与所成角的余弦值为
(2) 证明:已知,,
于是·=0,·=0.因此,,,又
所以平面
(3)解:设平面的法向量,则,即
不妨令X=1,可得.由(2)可知,为平面的一个法向量.
于是,从而
所以二面角的正弦值为
方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=
链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由,可知EF∥BC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以,所以异面直线FE与A1D所成角的余弦值为
(2)证明:连接AC,设AC与DE交点N 因为,所以,从而,又由于,所以,故AC⊥DE,又因为CC1⊥DE且,所以DE⊥平面ACF,从而AF⊥DE.
连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为,所以AF⊥平面A1ED
(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF, A1N平面ACF,所以DE⊥NF,DE⊥A1N,故为二面角A1-ED-F的平面角
易知,所以,又所以,在
连接A1C1,A1F 在
.所以
所以二面角A1-DE-F正弦值为
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有材料、材料供选择,研究人员对附着在材料、材料上再结晶各做了50次试验,得到如下等高条形图.
(1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?
材料 | 材料 | 合计 | |
成功 | |||
不成功 | |||
合计 |
(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为,第三个环节生产合格的概率为,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标?
附:参考公式:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=,若{bn}的前n项和为Tn,证明:Tn<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2ax2+2bx,若存在实数x0∈(0,t),使得对任意不为零的实数a,b均有f(x0)=a+b成立,则t的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为.
(Ⅰ)写出曲线和直线的直角坐标方程;
(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.
(1)若椭圆经过圆的圆心,求椭圆的方程;
(2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com