精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥的棱长均为6,其内有个小球,球与三棱锥的四个面都相切,球与三棱锥的三个面和球都相切,如此类推,,球与三棱锥的三个面和球都相切(,且),则球的体积等于__________,球的表面积等于__________.

【答案】

【解析】

由正四面体的内切球的半径是高的可求得的半径,得其体积,把底面向上平移,平移到与内切球相切,这个平面以上的部分仍然是正四面体,而第二个球就是这个正四面体的内切球,此球半径是第一个球半径的一半,依次类推可得第个球.

如图,是三棱锥的高,的外心,设,则

是三棱锥的外接球和内切球的球心,上,

设外接球半径为,内切球半径为,则由,所以

中点作与底面平行的平面与三条棱交于点,则平面与球相切,由题意球是三棱锥的内切球,注意到三棱锥的棱长是三棱锥棱长的,所以有其内切球半径,同理球的半径为,则是仅比为的等比数列,所以,即

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.

根据该折线统计图,下面说法错误的是

A. 这10年中有3年的GDP增速在9.00%以上

B. 从2010年开始GDP的增速逐年下滑

C. 这10年GDP仍保持6.5%以上的中高速增长

D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?

(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高中生在被问及“家朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.

(1)请根据以上调查结果将下面列联表补充完整并判断能否有的把握认为“恋家在家里感到最幸福”与城市有关

在家里最幸福

在其它场所最幸福

合计

洛阳高中生

上海高中生

合计

(2) 从被调查的不“恋家”的上海学生中用分层抽样的方法选出4人接受进一步调查从被选出的4 人中随机抽取2人到洛阳交流学习求这2人中含有在“个人空间”感到幸福的学生的概率.

其中d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程是.

1)求ab的值;

2)若对任意,都有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB1AD2,△ABD沿对角线BD翻折,形成三棱锥ABCD

①当时,三棱锥ABCD的体积为

②当面ABD⊥面BCD时,ABCD

③三棱锥ABCD外接球的表面积为定值.

以上命题正确的是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,设平面平面.

1)证明:

2)若平面平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱(侧棱垂直于底面,且底面三角形是等边三角形)中,分别是的中点.

1)求证:平面∥平面

2)在线段上是否存在一点使平面?若存在,确定点的位置;若不存在,也请说明理由.

查看答案和解析>>

同步练习册答案