精英家教网 > 高中数学 > 题目详情

【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[2030)[3040)[8090],并整理得到如下频率分布直方图:

1)估算一下本次参加考试的同学成绩的中位数和众数;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[4050)内的人数;

3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.

【答案】1)中位数72.5,众数75;(220人;(33:2

【解析】

1)由频率分布直方图知,样本中分数低于50分的频率为0.1,可以估计中位数为:,众数则由直方图即可得出;

2)由(1)得样本中分数低于50分的频率为0.1,可求出样本中分数低于50分的人数,而样本中分数小于40的学生有5人,即可求出样本中分数在区间[4050)内的人数,进而可估计总体中分数在区间[4050)内的人数;

3)根据频率分布直方图,得出样本中分数不小于70的人数为:人,结合题中条件,即可求出100个样本中理科生人数为60人,女生人数为40人,最后根据分层抽样的原理,即可估计总体中理科生和文科生人数的比例.

解:(1)由频率分布直方图知,样本中分数低于50分的频率为:

[5060)[6070)[7080)[8090]的频率分别为:0.10.20.40.2

观察可知,中位数位于[7080]内,

则可以估计中位数为:

则众数为:.

2)由(1)得样本中分数低于50分的频率为0.1

所以样本中分数低于50分的人数为:人,

而样本中分数小于40的学生有5人,

所以样本中分数在区间[4050)内的人数为:10-5=5人,

根据分层抽样,可估计总体中分数在区间[4050)内的人数为:.

3)根据题意,样本中分数不小于70的人数为:人,

而样本中分数不小于70的文理科生人数相等,

则样本中分数不小于70的文科人数为30人,理科人数为30人,

而样本中有一半理科生的分数不小于70

则100个样本中理科生人数为:人,文科人数为40人,

根据分层抽样的原理,可估计出总体中理科生和文科生人数的比例为:6040=3:2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(Ⅰ)估计该组数据的中位数、众数;

(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:

(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;

(ii)每次赠送的随机话费和对应概率如下:

赠送话费(单元:元)

10

20

概率

现有一位市民要参加此次问卷调查,记X(单位元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.

若ZN(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两点 动点满足线段的中垂线交线段.

(1)求点的轨迹的方程;

(2)过点的直线与轨迹相交于两点,设点直线的斜率分别为是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为常数且)在处取得极值.

(1)当时,求的极大值点和极小值点;

(2)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线 的焦点,过点作两条互相垂直的直线,直线于不同的两点,直线于不同的两点,记直线的斜率为.

(1)求的取值范围;

(2)设线段的中点分别为点,求证: 为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,点x轴的正半轴上,过点M的直线l与抛线C相交于AB两点,O为坐标原点.

,且直线l的斜率为1,求证:以AB为直径的圆与抛物线C的准线相切;

是否存在定点M,使得不论直线l绕点M如何转动,恒为定值?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为

(1)求的值;

(2)若不等式的解集为,不等式的解集为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答,统计情况如下表:(单位:人)

几何题

代数题

总计

男 同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?

(2)现从选择几何题的8名女生中任意抽取两人对他们的答题进行研究,记甲、乙两名女生被抽到的人数为的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,分别是的中点.

(Ⅰ)求证:四点共面;

(Ⅱ)求证:平面∥平面

(Ⅲ)画出平面与正方体侧面的交线(需要有必要的作图说明、保留作图痕迹).

查看答案和解析>>

同步练习册答案