【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,,平面平面 ABCD, .E,F 分别是线段 SC,AB 上的一点, .
(1)求证:平面SAD;
(2)求平面DEF与平面SBC所成锐二面角的正弦值.
【答案】(1)证明见解析
(2)
【解析】
(1)先证明平行四边形AGEF,得到AG∥EF,再证明EF∥平面SAD;
(2)以OA,OB,OS所在直线为x,y,z轴,建立空间直角坐标系如图,求出平面DEF的法向量和平面SBC的一个法向量,利用向量的夹角公式求出二面角的余弦值,从而求出平面DEF与平面SBC所成锐二面角的正弦值.
(1)过点E作EG∥DC,如图,连接AG,因为,所以,
故EG∥CD,EG,由,AF,
因为菱形ABCD,所以EG∥AF,EG=AF,
故平行四边形AGEF,所以AG∥EF,
又平面,平面,所以平面.
(2)取AD中点O,等腰三角形SAD,故SO⊥AD,连接OB,
菱形ABCD,∠ADC=120°,所以OB⊥OA,
又平面SAD⊥平面ABCD所以SO⊥平面ABCD,
以OA,OB,OS所在直线为x,y,z轴,建立空间直角坐标系如图,
因为SA=SD=3,所以AD=AB=CD=6,SO=3,
∠ADC=120°,所以AF=2,OB,AO=OD=3,
所以A(3,0,0),D(﹣3,0,0),S(0,0,3),
F(2,,0),B(0,3,0),C(﹣6,3,0),
又(﹣2,,﹣1),得E(﹣2,,2),
所以,,,,
设平面DEF的一个法向量为,
由,得,故
设平面SBC的一个法向量为,
由,得,故,
所以,
平面DEF与平面SBC所成锐二面角的正弦值为.
科目:高中数学 来源: 题型:
【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为,P是上一动点,,Q的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程,
(2)若点,直线l的参数方程为(t为参数),直线l与曲线的交点为A,B,当取最小值时,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:经过点,右焦点到直线的距离为.
(1)求椭圆的标准方程;
(2)定义为,两点所在直线的斜率,若四边形为椭圆的内接四边形,且,相交于原点,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列: 满足: , 或1().对任意,都存在,使得.,其中 且两两不相等.
(I)若.写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)记.若,证明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某同学在素质教育基地通过自己设计、选料、制作,打磨出了一个作品,作品由三根木棒,,组成,三根木棒有相同的端点(粗细忽略不计),且四点在同一平面内,,,木棒可绕点O任意旋转,设BC的中点为D.
(1)当时,求OD的长;
(2)当木棒OC绕点O任意旋转时,求AD的长的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com