精英家教网 > 高中数学 > 题目详情

【题目】(1)利用“五点法”画出函数在长度为一个周期的闭区间的简图.

列表:

x

y

作图:

(2)并说明该函数图象可由的图象经过怎么变换得到的.

(3)求函数图象的对称轴方程.

【答案】(1)见解析(2) 见解析(3) .

【解析】

(1)先列表如图确定五点的坐标,后描点并画图,利用五点法画出函数在长度为一个周期的闭区间的简图;
(2)依据的图象上所有的点向左平移个单位长度,的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,再把所得图象的纵坐标伸长到原来的2倍(横坐标不变),得到的图象;

(3)令,求出即可.

解:(1)先列表,后描点并画图

0

x

y

0

1

0

-1

0

2)把的图象上所有的点向左平移个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,即的图象;

3)由

所以函数的对称轴方程是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数上的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求不等式上的解;

2)设关于直线对称的函数为,求证:当时,

3)若函数恰好在两处取得极值,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)由012,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数共有几种?

2)我校高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,求不同的选取法的种数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数f(x)的单调递增区间;

2)若,求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,函数在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下命题:①函数的图象恰有三个交点;②函数的图象恰有一个交点;③函数的图象恰有两个交点;④函数的图象恰有三个交点,其中真命题为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量达到2079mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?(  )(参考数据:lg0.2≈0.71g0.3≈0.51g0.7≈0.151g0.8≈0.1

A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求该函数的最大值;

2)是否存在实数,使得该函数在闭区间上的最大值为?若存在,求出对应的值;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案