精英家教网 > 高中数学 > 题目详情
3.下列函数中,既是偶函数又在(-∞,0)内为增函数的是(  )
A.y=($\frac{1}{2}$)xB.y=x-2C.y=x2+1D.y=log3(-x)

分析 逐一分析给定四个函数的奇偶性,及在(-∞,0)内的单调性,可得答案.

解答 解:函数y=($\frac{1}{2}$)x是非奇非偶函数,在(-∞,0)内为减函数,故A不满足条件;
函数y=x-2既是偶函数又在(-∞,0)内为增函数,故B满足条件;
y=x2+1是偶函数,但在(-∞,0)内为减函数,故C不满足条件;
y=log3(-x)是非奇非偶函数,在(-∞,0)内为减函数,故D不满足条件;
故选:B

点评 本题考查的知识点是函数的单调性判断与证明,函数的奇偶性,熟练掌握各种基本初等函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B之间的距离为(  )
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的递减区间为(  )
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果α∥β,m?α,那么m∥β;
②若m⊥α,m⊥n,则n∥α;
③如果m⊥α,n∥α,那么m⊥n;
④如果m⊥n,m⊥α,n∥β,那么α⊥β.
其中正确的命题有①③; (填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线y=x+b与曲线(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共点,则实数b的取值范围是(  )
A.[1-2$\sqrt{2}$,3]B.[1-$\sqrt{2}$,3]C.[-1,1+2$\sqrt{2}$]D.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)=$\frac{1-g(x)}{1+g(x)}$是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知$z=\frac{1+2i}{3-4i}$,求|z|;
(2)已知2-3i是关于x的一元二次实系数方程x2+px+q=0的一个根,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F为双曲线$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{3}$B.3C.$\sqrt{3}a$D.3a

查看答案和解析>>

同步练习册答案