精英家教网 > 高中数学 > 题目详情

【题目】对于任意实数x,不等式ax2+2ax﹣(a+2)<0恒成立,则实数a的取值范围是(
A.﹣1≤a≤0
B.﹣1≤a<0
C.﹣1<a≤0
D.﹣1<a<0

【答案】C
【解析】解:1°a<0时,△=4a2+4a(a+2)=8a2+8a<0,∴8a(a+1)<0,∴﹣1<a<0
2°a=0时,﹣2<0成立
综上,实数a的取值范围是﹣1<a≤0
故选C.
【考点精析】关于本题考查的解一元二次不等式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.

(1)设圆轴相切,与圆外切,且圆心在直线上,求圆的标准方程;

(2)设平行于的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数
(1)求a的值;
(2)判断函数的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项数列{an}的前n项和为Sn , 且2Sn=an2+an(n∈N*),设cn=(﹣1)n ,则数列{cn}的前2017项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,向量分别为平面直角坐标内轴正方向上的单位向量,若向量 , ,

)求点的轨迹的方程;

)设椭圆,曲线的切线 交椭圆两点,试证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为为参数),曲线的普通方程为以坐标原点为极点,的正半轴为极轴建立极坐标系.

I)求直线的极坐标方程与曲线的参数方程;

II设点D在曲线上,曲线D处的切线与直线垂直,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数,).

(Ⅰ)当时,若曲线上存在两点关于点成中心对称,求直线的参数方程;

(Ⅱ)在以原点为极点,轴的正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数列{an}前n项和为Sn , an>0(n=1,2,…),a1=a2=1,且对n≥2有(a1+a2+…+an)an=(a1+a2+…+an1)an+1 , 则S1S2+S2S3+S3S4+…+Sn1Sn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asin(x+ )﹣b(a>0)的最大值为2,最小值为0.
(1)求a、b的值;
(2)利用列表法画出函数在一个周期内的图象.

查看答案和解析>>

同步练习册答案