精英家教网 > 高中数学 > 题目详情
2.(Ⅰ)若不等式|x-m|<1成立的充分不必要条件为$\frac{1}{3}$<x<$\frac{1}{2}$求实数m的取值范围;
(Ⅱ)关于x的不等式|x-3|+|x-5|<a的解集不是空集,求实数a的取值范围.

分析 (Ⅰ)先求出不等式|x-m|<1的解集,再由不等式|x-m|<1成立的充分不必要条件为$\frac{1}{3}$<x<$\frac{1}{2}$,确定m的取值范围.
(Ⅱ)利用绝对值不等式,结合|x-3|+|x-5|<a的解集不是空集,求实数a的取值范围.

解答 解:(Ⅰ)由不等式|x-m|<1得m-1<x<m+1,依题意{x|$\frac{1}{3}$<x<$\frac{1}{2}$}⊆{x|m-1<x<m+1},则$\left\{\begin{array}{l}{m-1≤\frac{1}{3}}\\{m+1≥\frac{1}{2}}\end{array}\right.$,
解得-$\frac{1}{2}≤m≤\frac{4}{3}$;5分
(Ⅱ)∵|x-3|+|x-5|≥|(x-3)-(x-5)|=2,
且|x-3|+|x-5|<a的解集不是空集,
∴a>2,即a的取值范围是(2,+∞).10分.

点评 本题考查充分不必要条件的应用,考查绝对值不等式,解题时要注意含绝对值不等式的解法和应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合$A=\left\{{x|y={{log}_2}x}\right\},B=\left\{{x|{x^2}-1<0}\right\}$,则(∁UA)∩B={x|-1<x≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果方程x2-4ax+3a2=0的一根小于1,另一根大于1,那么实数a的取值范围是(  )
A.$\frac{1}{3}<a<1$B.a>1C.$a<\frac{1}{3}$D.a=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在空间直角坐标系O-xyz中,点(3,-1,m)平面Oxy对称点为(3,n,-2),则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O的方程为 x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0)C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0)D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2ln(3x)+8x,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值为(  )
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为ξ1(万元)的概率分布列如表所示:
ξ1 110 120170 
P m  0.4n 
且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为p(0<p<1)和1-p,乙项目产品价格一年内调整次数X(次)与ξ2的关系如表所示:
X(次)  01 2 
 ξ2 41.2 117.6204.0 
(1)求m,n的值;
(2)求ξ2的分布列;
(3)根据投资回报率的大小请你为公司决策:当p在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=ln(2sinx-1)的定义域为{x|$\frac{π}{6}$+2kπ<x<$\frac{5π}{6}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,等腰△ABC中,AB=BC=5,AC=6,点E,F分别在AB,BC上,AE=CF=$\frac{5}{4}$,O为AC边上的中点,EF交BO于点H,将△BEF沿EF折到△B′EF的位置,OB′=$\sqrt{10}$.
(1)证明:B′H⊥平面ABC;
(2)求二面角B-B′A-C的余弦值.

查看答案和解析>>

同步练习册答案