精英家教网 > 高中数学 > 题目详情

【题目】在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60.在这些居民中,经常阅读的城镇居民有100人,农村居民有30.

1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?

城镇居民

农村居民

合计

经常阅读

100

30

不经常阅读

合计

200

2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)见解析,有99%的把握认为经常阅读与居民居住地有关.2

【解析】

1)根据题意填写列联表,利用公式求出,比较6.635的大小得结论;

2)由样本数据可得经常阅读的人的概率是,则,根据二项分布的期望公式计算可得;

解:(1)由题意可得:

城镇居民

农村居民

合计

经常阅读

100

30

130

不经常阅读

40

30

70

合计

140

60

200

所以有99%的把握认为经常阅读与居民居住地有关.

2)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且,所以随机变量的期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间为函数的一个可等域区间.给出下列4个函数:

其中存在唯一可等域区间可等域函数为( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.

(1)求A;

(2)已知a=2,B=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线.

(Ⅰ)求的极坐标方程和曲线的参数方程;

(Ⅱ)求曲线的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次 数为

1)求的分布列及其期望;

2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;

ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电影《厉害了,我的国》于20183月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾我为我的国家骄傲,我为我是中国人骄傲!《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1234的四个不同的盒子里,让四位好朋友进行猜测:

甲说:第1个盒子里放的是,第3个盒子里放的是

乙说:第2个盒子里放的是,第3个盒子里放的是

丙说:第4个盒子里放的是,第2个盒子里放的是

丁说:第4个盒子里放的是,第3个盒子里放的是

小明说:四位朋友你们都只说对了一半

可以预测,第4个盒子里放的电影票为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCDADBCDAABAD2ABBC1CD,点EPD中点.

1)求证:CE∥平面PAB

2)若PA2PD2,∠PAB,求平面PBD与平面ECD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,,且.

1)求证:平面平面

2)设二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案
鍏� 闂�