1£®ÒÑÖª¿Õ¼ä·ÇÁãÏòÁ¿$\overrightarrow{{s}_{1}}$£¬$\overrightarrow{{s}_{2}}$£¬Ôò¡°cos£¼$\overrightarrow{{s}_{1}}$£¬$\overrightarrow{{s}_{2}}$£¾=$\frac{1}{2}$¡±ÊÇ¡°$\overrightarrow{{s}_{1}}$Óë$\overrightarrow{{s}_{2}}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

·ÖÎö ÓÉÏòÁ¿ºÍÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°³äÒªÌõ¼þµÄÅж¨¿ÉµÃ£®

½â´ð ½â£º¡ßÏòÁ¿µÄ¼Ð½ÇÔÚ[0£¬¦Ð]£¬ÓàÏÒº¯ÊýÔÚ[0£¬¦Ð]µ¥µ÷µÝ¼õ£¬
½áºÏcos$\frac{¦Ð}{3}$=$\frac{1}{2}$¿ÉµÃ¡°cos£¼$\overrightarrow{{s}_{1}}$£¬$\overrightarrow{{s}_{2}}$£¾=$\frac{1}{2}$¡±ÊÇ¡°$\overrightarrow{{s}_{1}}$Óë$\overrightarrow{{s}_{2}}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$¡±µÄ³äÒªÌõ¼þ£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²é³äÒªÌõ¼þµÄÅж¨£¬Éæ¼°ÏòÁ¿ºÍÈý½Çº¯ÊýµÄ֪ʶ£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1£¨-1£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£º
£¨¢ò£©¹ýÍÖÔ²½¹µãFµÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£®
£¨1£©ÈôFÊÇÓÒ½¹µã£¬yÖáÉÏÒ»µãM£¨0£¬$\frac{1}{3}$£©Âú×ã|MN|=|MB|£¬ÇóÖ±Ïß1бÂÊkµÄÖµ£»
£¨2£©ÈôFÊÇ×󽹵㣬Éè¹ýµãFÇÒ²»Óë×ø±êÖá´¹Ö±µÄÖ±Ïß1½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬Ï߶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãG£¬ÇóµãGµÄºá×ø±êµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ºÍÅ×ÎïÏßC2£ºy2=2px£¨p£¾0£©¶¼¾­¹ýµãM£¨$\frac{2}{3}$£¬$\frac{2\sqrt{6}}{3}$£©£¬ÇÒÍÖÔ²C1µÄÓÒ½¹µãºÍÅ×ÎïÏßC2µÄ½¹µãF2Ïàͬ£®
£¨1£©ÇóC1£¬C2µÄ·½³Ì£»
£¨2£©¹ýF2×÷бÂÊΪkµÄÖ±ÏßlºÍÅ×ÎïÏßC2ÏཻÓÚA£¬BÁ½µã£¬Ö±ÏßlºÍÍÖÔ²C1ÏཻÓÚC£¬DÁ½µã£¬Èçͼ£¬µ±¡÷CDF1µÄÃæ»ýºÍ¡÷ABOµÄÃæ»ýÏàµÈʱ£¬ÇóбÂÊkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}ÖÐa1=1£¬¶Ô?n¡ÊN*£¬º¯Êýf£¨x£©=x2-an+1cosx+2an+1ÔÚ¶¨ÒåÓòÄÚÓÐΨһµÄÁãµã£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÏÂÁнáÂÛÖУº
¢ÙÈô£¨x£¬y£©ÔÚÓ³ÉäfµÄ×÷ÓÃϵÄÏóÊÇ£¨x+2y£¬2x-y£©£¬ÔòÔÚÓ³ÉäfÏ£¬£¨3£¬1£©µÄÔ­ÏóΪ£¨1£¬1£©£»
¢ÚÈôº¯Êýf£¨x£©Âú×ãf£¨x-1£©=f£¨x+1£©£¬Ôòf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
¢Ûº¯Êýy=|3-x2|-a£¨a¡ÊR£©µÄÁãµã¸öÊýΪm£¬ÔòmµÄÖµ²»¿ÉÄÜΪ1£»
¢Üº¯Êýf£¨x£©=log2£¨3x2-ax+5£©ÔÚ£¨-1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[-8£¬-6]£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ۢܣ¨Ç뽫ËùÓÐÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¹ýÔ²x2+y2=4ÉÏÒ»µã£¨$\sqrt{2}$£¬1£©µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
A£®x+$\sqrt{2}$y=4B£®$\sqrt{2}$x+y=3C£®$\sqrt{2}$x+y=4D£®x+$\sqrt{2}$y=2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÇóÏÂÁк¯ÊýµÄÖµÓò£º
£¨1£©y=-x2+2x+6
£¨2£©y=$\sqrt{2{x}^{2}+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=x-$\frac{1}{x}$£¬Èô²»µÈʽt•f£¨2x£©¡Ý2x-1¶Ôx¡Ê£¨0£¬1]ºã³ÉÁ¢£¬ÔòtµÄÈ¡Öµ·¶Î§Îª[$\frac{2}{3}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$¾­¹ýÒ»¡¢ÈýÏóÏ޵Ľ¥½üÏßΪm£¬ÈôÔ²${x^2}+{y^2}-2\sqrt{5}x-2\sqrt{5}y+6=0$ÉÏÖÁÉÙÓÐÈý¸ö²»Í¬µÄµãµ½mµÄ¾àÀëΪ1£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®$[{\frac{{\sqrt{5}}}{2}£¬2\sqrt{5}}]$B£®$£¨{1£¬\sqrt{5}}]$C£®$[{\frac{{\sqrt{5}}}{2}£¬\sqrt{5}}]$D£®$[{\sqrt{5}£¬2\sqrt{5}}]$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸