精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=2px(p>0),F为其焦点,过点(4,0)作垂直于x轴的直线交抛物线于A,B两点,△ABF的周长为18.
(1)求抛物线的方程;
(2)过抛物线上的定点 作两条关于直线y=p对称的直线分别交抛物线于C,D两点,连接CD,判断直线CD的斜率是否为定值?并证明你的结论.

【答案】
(1)解:依据题意,A,B两点的坐标为

所以△ABF的周长为:

,∴

故抛物线方程为y2=4x.


(2)解:由(1)知M(1,2),由题意知MC,MD两直线关于直线y=2对称,则直线MC,MD的倾斜角互补,

显然斜率均存在且不为0,设kMC=k,则kMD=﹣k,此时直线MC的方程为y﹣2=k(x﹣1), 将其代入y2=4x,并整理得:

设C(x1,y1),D(x2,y2),则由韦达定理可得:

所以 ,同理,将上式中的k换成﹣k,得

所以

所以直线CD的斜率恒为﹣1.


【解析】1、根据题意求出A、B两点的坐标再利用△ABF的周长得到关于p的方程即得结果。
2、 由题意可设直线MC的斜率为k,MD的斜率为-k,可求得直线MC、MD的方程再与抛物线的方程联立求出交点坐标,进而可求得直线的斜率,从而可得到结论:直线CD的斜率恒为﹣1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市随机抽取部分企业调查年上缴税收情况{单位万元,将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100]样本数据分组为[0,20),[20,40)[40,60)[60,80),[80,100)

(1)求直方图中x的值;
(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(3)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(  )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=
A.2寸
B.3寸
C.4寸
D.5寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广东佛山某学校参加暑假社会实践活动知识竞赛的学生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分层抽样的方法从得分在[80,100]的学生中抽取一个容量为5的样本,将该样本看成一个整体,从中任意选取2人,则其中恰有1人分数不低于90的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学人力资源部计划2016年招聘2名数学教师,共5名应聘者进入最后课堂实录环节.5名数学组评审专家给出评分如表:

评审专家/应聘老师

1

2

3

4

5

评审专家A

93.0

90.0

88.5

89.5

82.5

评审专家B

94.0

83.0

89.0

93.0

81.0

评审专家C

91.0

85.0

81.5

88.0

81.0

评审专家D

92.0

91.5

81.0

94.5

87.0

评审专家E

95.5

91.0

90.0

95.5

88.5

(Ⅰ)若依据去掉一个最高分和一个最低分规则计算应聘老师成绩,试确定最终应聘成功的2名数学老师的序号;
(Ⅱ)在课堂实录环节,每名应聘老师都需要从5名评审专家中随机选取2名进行点评,且每名应聘老师的选择互不影响,设X表示评审专家A进行点评的次数,求X的分布列以及数学期望;
(Ⅲ)记评审专家A与评审专家B给出的评分的方差分别为 ,试比较 的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.

(1)证明:平面ABE⊥平面EBD;
(2)若三棱锥 A﹣BDE的外接球的体积为 ,求三棱锥 A﹣BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取部分男生进行身体素质测试,获得掷实心球的成绩数据,整理得到数据分组及频率分布表,成绩在11.0米(精确到0.1米)以上(含)的男生为“优秀生”.

分组(米)

频数

频率

[3.0,5.0)

0.10

[5.0,7.0)

0.10

[7.0,9.0)

0.10

[9.0,11.0)

0.20

[11.0,13.0)

0.40

[13.0,15.0)

10

合计

1.00

(Ⅰ)求参加测试的男生中“优秀生”的人数;
(Ⅱ)从参加测试男生的成绩中,根据表中分组情况,按分层抽样的方法抽取10名男生的成绩作为一个样本,再从该样本中任选2名男生的成绩,求至少选出1名男生的成绩不低于13.0米的概率;
(Ⅲ)若将这次测试的频率作为概率,从该校全体男生中随机抽取3人,记X表示3人中“优秀生”的人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案