精英家教网 > 高中数学 > 题目详情

【题目】已知函数(,且),且.

(1)求实数的值;

(2)判断函数的奇偶性并证明

(3)若函数有零点,求实数的取值范围.

【答案】(1)2(2)奇函数.见解析 (3).

【解析】

(1)代入求解即可.

(2)(1)化简可得,再分析的关系判定即可.

(3)分析可知有实根,再换元令,分析,的取值范围进而求得的取值范围即可.

(1)因为

解得

(2)是奇函数.

得:

,所以是奇函数

(3)方法一:

代入可得

因为有零点,所以有实根.

显然不是的实根,所以有实根.

,,.因为.

①当时,,所以,

所以

②当时,,

所以

综上,的值域为

所以,当时,有实根,

有零点

方法二:代入可得

因为有零点,所以有实根.

所以有实根.

显然,时上式不成立,所以有实根

因为,

所以

所以.

所以,当时,有实根.

有零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需要两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )

原料限额

(吨)

3

2

10

(吨)

1

2

6

A. 10万元B. 12万元C. 13万元D. 14万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求实数的值;

(2)若,且函数上是单调函数,求实数的值;

(3)若,若当时,总有,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最小正周期;

(2)当时,

(ⅰ)求函数的单调递减区间;

(ⅱ)求函数的最大值最小值,并分别求出使该函数取得最大值最小值时的自变量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求的定义域;

2)若上为减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】最近几年,每年11月初,黄浦江上漂浮着的水葫芦便会迅速增长,严重影响了市容景观,为了解决这个环境问题,科研人员进行科研攻关,下图是科研人员在实验室池塘中观察水葫芦面积与时间的函数关系图像,假设其函数关系为指数函数,并给出下列说法:

①此指数函数的底数为

②在第个月时,水葫芦的面积会超过

③设水葫芦面积蔓延至所需的时间分别为,则有;其中正确的说法有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,.

(1)求证:∥平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案