精英家教网 > 高中数学 > 题目详情

【题目】如图1,矩形中, ,将沿折起,得到如图所示的四棱锥,其中.

(1)证明:平面平面

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1的中点,连接 .易知, ,又求得 ,所以,得所以平面,平面平面.

2)建立空间直角坐标系,求得平面的法向量.平面的法向量

所以求得二面角的余弦值为

试题解析:

(1)在图2中取的中点,连接 .由条件可知图1中四边形为正方形,则有,且可求得.

中, ,由余弦定理得.

中, ,所以,即.

由于 平面 ,所以平面.

平面,故平面平面.

(2)如图,以为坐标原点,以平行于的方向为轴,平行于的方向为轴,建立空间直角坐标系.由题设条件,可得 .

由(1)得平面,可求得点坐标为

所以 ,设平面的法向量为,由,由此可得.

由于 ,设平面的法向量为,由,由此可得

所以

则平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.

年级名次
是否近视

1~50

951~1000

近视

41

32

不近视

9

18

附:P(K2≥3.841=0.05)K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=0时,求f(x)的极值.
(2)当a≠0时,若f(x)是减函数,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期为π,且f( )=
(1)求ω和φ的值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的单调区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程;
(3)求证:对任意的正数a与b,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣6x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则a的取值范围是(
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
D.(4 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2+4x﹣lnx.
(1)当a=﹣3时,求f(x)的单调区间;
(2)当a≠0时,若f(x)是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|log2x≤1},则A∩B=(
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两向量e1、e2满足| |=2,| |=1, 的夹角为60°,若向量2t +7 与向量 +t 的夹角为钝角,求实数t的取值范围.

查看答案和解析>>

同步练习册答案