在△ABC中,内角A,B,C的对边分别为a,b,c,若.
(1)求证:;
(2)若,且,求的值.
(1)证明见解析;(2).
【解析】
试题分析:(1)要求证角的范围,我们应该求出或的取值范围,已知条件是角的关系,首先变形(通分,应用三角公式)得,结合两角和与差的余弦公式,有,即,变形为,解得,所以有,也可由正弦定理得,再由余弦定理有,从而有,也能得到;(2)要求向量的模,一般通过求这个向量的平方来解决,而向量的平方可由向量的数量积计算得到,如,由及可得,由(1),于是可得,这样所要结论可求.
(1)因为 2分
所以 ,由正弦定理可得, 4分
因为,
所以,即 6分
(2)因为,且,所以B不是最大角,
所以. 8分
所以,得,因而. 10分
由余弦定理得,所以. 12分
所以
即 14分
考点:(1)三角恒等式与余弦定理;(2)向量的模.
科目:高中数学 来源:2013-2014学年江苏省苏、锡、常、镇四市高三教学情况调查(一)理科数学试卷(解析版) 题型:填空题
已知函数,若函数恰有两个不同的零点,则实数的取值范围为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省盐城市高三第三次模拟考试数学试卷(解析版) 题型:解答题
已知椭圆的右准线,离心率,,是椭圆上的两动点,动点满足,(其中为常数).
(1)求椭圆标准方程;
(2)当且直线与斜率均存在时,求的最小值;
(3)若是线段的中点,且,问是否存在常数和平面内两定点,,使得动点满足,若存在,求出的值和定点,;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三5月信息卷理科数学试卷(解析版) 题型:解答题
已知函数(R),为其导函数,且时有极小值.
(1)求的单调递减区间;
(2)若,,当时,对于任意x,和的值至少有一个是正数,求实数m的取值范围;
(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三5月信息卷文科数学试卷(解析版) 题型:填空题
在一个样本的频率分布直方图中,共有5个小矩形,若中间一个小矩形的面积等于其他4个小矩形的面积和的,且中间一组的频数为25,则样本容量为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com