精英家教网 > 高中数学 > 题目详情
7.用符号“>”、“>”、“=”填空:
${log}_{{5}^{3}}$<${log}_{{5}^{7}}$;
${log}_{{8}^{1}}$=${log}_{{7}^{1}}$;
${log}_{{\frac{1}{2}}^{5}}$<log${\;}_{\frac{1}{3}}$$\frac{1}{5}$;
ln0.3<0;
${log}_{{0.1}^{2}}$<0;
lg$\frac{1}{3}$<lg10.

分析 根据对数函数性质,f(x)=logax,当a>1时,函数为增函数,当0<a<1时,为减函数,且loga1=0,即可判断.

解答 解:根据对数函数性质,f(x)=logax,当a>1时,函数为增函数,当0<a<1时,为减函数,且loga1=0,
故${log}_{{5}^{3}}$<${log}_{{5}^{7}}$;
${log}_{{8}^{1}}$=${log}_{{7}^{1}}$;
${log}_{{\frac{1}{2}}^{5}}$<log${\;}_{\frac{1}{3}}$$\frac{1}{5}$,
ln0.3<0;
${log}_{{0.1}^{2}}$<0;
lg$\frac{1}{3}$<lg10.
故答案为:<,=,<,<,<,<

点评 本题考查了对数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.数列{an}中,an=2n-1,Sn=a1+a2+…+an,则$\underset{lim}{x→∞}$$\frac{{a}_{n}^{2}}{{S}_{n}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN.求证:M,A,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明不等式|arctana-arctanb|≤|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点($\sqrt{3}$,$\frac{1}{2}$),且离心率为$\frac{\sqrt{3}}{2}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知斜率存在的动直线l与椭圆C交于不同的点A、B,且△OAB的面积为1,若P为线段AB的中点,问:在x轴上是否存在两个定点M、N,使得直线PM与直线PN的斜率之积为定值,若存在,求出M、N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设从某地前往火车站,可乘公共汽车,也可乘地铁,若乘公共汽车所需时间(单位:min)X~N(50,102),乘地铁所需时间Y~N(60,42),则
(1)若有70min可用,则乘公共汽车好还是乘地铁好?
(2)由于时间紧迫,决定做出租车去火车站,此时使用手机中打车软件甲,甲软件定位了A公司2辆出租车,B公司4辆出租车,每车被叫中的概率相等,甲软件能叫来两辆车,求A公司出租车被叫来的辆数?的分布列和数学期望E(?).(已知P(μ-3σ<X≤μ+3σ)=0.9974,P(μ-2σ<X≤μ+2σ)=0.9544)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=(ab-a-4b-5)x2+$\frac{a+4b}{x}$(a>0,b>0)为奇函数,则f(1)的最小值为(  )
A.12B.20C.16D.32

查看答案和解析>>

科目:高中数学 来源:2017届广东佛山一中高三上学期月考一数学(理)试卷(解析版) 题型:选择题

已知全集U = R,集合R│,下图中阴影部分所表示的集合为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二理上月考三数学试卷(解析版) 题型:选择题

已知正四棱锥的各棱棱长都为,则正四棱锥的外接球的表面积为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案