精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

【答案】(1)(2)见解析(3)

【解析】试题分析:

(1)频率分布直方图的小长方形面积之和为1,据此求得

(2)由题意可得,由二项分布的性质列出分布列,然后求解其属性期望为

(3)结合频率分布直方图的性质解方程可得: .

试题解析:

解:

(1)

(2)依题意从该城市居民中抽取用水量不低于3吨的概率为

0

1

2

3

0.729

0.243

0.027

0.001

(3)月用水量超过3吨的居民占10%,所以 (元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)或 时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 ,且 为线段上一点.

(1)求证:平面平面

(2)若,求证: 平面,并求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若 ,求证:△ABC为等腰三角形;
(2)若 ,边长c=2,角C= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若圆C的圆心在第一象限,圆C与x轴相交于A(1,0)、B(3,0)两点,且与直线x﹣y+1=0相切,则圆C的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点,且.

(1)求二面角的大小;

(2)在侧棱SC上是否存在一点E,使得平面?若存在,求 的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:

若将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?

(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.

(i)共有多少种不同的抽取方法?

(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 两点,且圆心在直线.

1)求圆的方程;

2)若直线过点且被圆截得的线段长为,求的方程.

查看答案和解析>>

同步练习册答案