精英家教网 > 高中数学 > 题目详情
根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足关系式Sn(21n-n2-5)(n=1,2,…,12),按此预测,在本年度内,需求量超过1.5万件的月份是________.
7、8
由Sn解出an(-n2+15n-9),再解不等式(-n2+15n-9)>1.5,得6<n<9.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为等差数列,且.
(1)求数列的通项公式;
(2)记的前项和为,若成等比数列,求正整数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn.已知a1=1,=an+1n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1+a2+…+an=n2(n∈N*).
(1)求数列{an}的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1
(2)若S5>a1a9,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知各项均为正数的数列{an}的前n项的乘积Tn(n∈N*),bn=log2an,则数列{bn}的前n项和Sn取最大时,n=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.
(1)求Sn
(2)这个数列的前多少项的和最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{n(n+4) n}中的最大项是第k项,则k=    .

查看答案和解析>>

同步练习册答案