精英家教网 > 高中数学 > 题目详情
8.已知10a=2,b=lg5,则a+b=1.

分析 把指数式化为对数式,利用对数的运算性质即可得出.

解答 解:∵10a=2,∴a=lg2,
∴a+b=lg2+lg5=1,
故答案为:1.

点评 本题考查了指数式化为对数式、对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.不等式tanx≥-$\frac{{\sqrt{3}}}{3}$的解集为$[-\frac{π}{6}+kπ,\frac{π}{2}+kπ)(k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正方形ADEF所在平面与等腰梯形BCEF所在平面互相垂直,且BC=2BF=2EF=4,G为BC中点.
(1)求证:AB∥平面DFG;
(2)求证:FG⊥平面BDE;
(3)求该多面体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设集合A={1,2,3},B={2,4},全集U={0,1,2,3,4}则(∁UA)∪B={0,2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是函数y=Asin(ωx+φ)(x∈R)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.为了得到这个函数的图象,只需将y=sinx(x∈R)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标伸长到原来的2倍
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标伸长到原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x3-3x,则函数h(x)=f[f(x)]-c,c∈[-2,2]的零点个数(  )
A.5或6个B.3或9个C.9或10个D.5或9个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量$\overrightarrow{a}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,特征值λ2=-1及其对应的一个特征向量$\overrightarrow{a}$2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
(1)求矩阵A;  
(2)求矩阵A的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U=R,集合A={x|x2+3x+2=0},B={x|(x+1)(x+m)=0},
(1)若m=1,用列举法表示集合A、B;
(2)若m≠1,且B⊆A,求m的值.

查看答案和解析>>

同步练习册答案