精英家教网 > 高中数学 > 题目详情
设P为曲线C:y=
1
3
x3-x2+x
上的点,且曲线C在点P处切线倾斜角的取值范围为[0,
π
4
]
,则点P横坐标的取值范围为
[0,2]
[0,2]
分析:根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.
解答:解:设点P的横坐标为x0,∵y=
1
3
x3-x2+x
,∴y'|x=x0=x02-2x0
利用导数的几何意义得x02-2x0=tanα(α为点P处切线的倾斜角),
又∵α∈[0,
π
4
]
,∴0≤x02-2x0≤1,
∴x0∈[0,2]
故答案为:[0,2].
点评:本小题主要考查利用导数的几何意义求切线斜率问题,解题时要认真审题,仔细解答,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是[0,
π
4
]
,则点P横坐标的取值范围是(  )
A、[-1,-
1
2
]
B、[-1,0]
C、[0,1]
D、[
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为曲线C:y=x2-x+1上一点,曲线C在点P处的切线的斜率的范围是[-1,3],则点P纵坐标的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[
π
4
π
2
],则点P横坐标的取值范围为(  )
A、(-∞,
1
2
]
B、[-1,0]
C、[0,1]
D、[-
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,
π
4
]
,则点P纵坐标的取值范围为(  )
A、[-1, -
1
2
]
B、[2,
9
4
]
C、[2,3]
D、[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角不大于
π
4
,则点P横坐标的取值范围是(  )

查看答案和解析>>

同步练习册答案