精英家教网 > 高中数学 > 题目详情

已知两条直线m,n,两个平面α,β,给出下面四个命题:

mn,m⊥αn⊥α;

②α∥β,m?α,n?βmn;

mn,m∥αn∥α;

④α∥β,mn,m⊥αn⊥β.

其中正确命题的序号是(  )

(A)①③ (B)②④ (C)①④ (D)②③

 

C

【解析】对于①,由于两条平行线中的一条直线与一个平面垂直,则另一条直线也与该平面垂直,因此①是正确的;对于②,分别位于两个平行平面内的两条直线必没有公共点,但它们不一定平行,因此②是错误的;对于③,直线n可能位于平面α内,此时结论显然不成立,因此③是错误的;对于④,m⊥α且α∥β得m⊥β,mn,n⊥β,因此④是正确的.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(九)第二章第六节练习卷(解析版) 题型:选择题

实数a=0.,b=log30.3,c=的大小关系正确的是(  )

(A)a<c<b (B)a<b<c

(C)b<a<c (D)b<c<a

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(一)第一章第一节练习卷(解析版) 题型:填空题

已知集合A={xN|N},则集合A的所有子集是     .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十四第七章第三节练习卷(解析版) 题型:填空题

如图,在棱长为2的正方体ABCD -A1B1C1D1,O是底面ABCD的中心,E,F分别是CC1,AD的中点,则异面直线OEFD1所成角的余弦值为    .

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十四第七章第三节练习卷(解析版) 题型:选择题

如图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1l2(  )

(A)互相平行

(B)异面且互相垂直

(C)异面且夹角为

(D)相交且夹角为

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十六第七章第五节练习卷(解析版) 题型:填空题

若四面体ABCD的三组对棱分别相等,AB=CD,AC=BD,AD=BC,    (写出所有正确结论的编号).

①四面体ABCD每组对棱相互垂直;

②四面体ABCD每个面的面积相等;

③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;

④连接四面体ABCD每组对棱中点的线段相互垂直平分;

⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十六第七章第五节练习卷(解析版) 题型:选择题

l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是(  )

①若l⊥α,m∥β,α⊥β,lm;

②若m?α,n?α,lm,ln,l⊥α;

③若lm,mn,l⊥α,n⊥α;

④若lm,m⊥α,n⊥β,α∥β,ln.

(A)1 (B)2 (C)3 (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十五第七章第四节练习卷(解析版) 题型:解答题

如图所示,四边形EFGH所在平面为三棱锥A-BCD的一个截面,四边形EFGH为平行四边形.

(1)求证:AB∥平面EFGH,CD∥平面EFGH.

(2)AB=4,CD=6,求四边形EFGH周长的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:填空题

如图是一个组合几何体的三视图,则该几何体的体积是    .

 

 

查看答案和解析>>

同步练习册答案