精英家教网 > 高中数学 > 题目详情
14.设ω为正实数,若存在a,b(π≤a<b≤2π),使得sinωa+sinωb=2,则ω的取值范围($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{5}{4}$,+∞).

分析 由三角函数的有界性可得ω的范围,给k取值综合可得.

解答 解:∵sinωa≤1,sinωb≤1,
∴sinωa+sinωb≤2,
∵sinωa+sinωb=2,
∴sinωa=1,sinωb=1,
∴ωa=2kπ+$\frac{π}{2}$,sinωb=2kπ+$\frac{π}{2}$,
∵π≤a<b≤2π,∴ωπ≤ωa<2ωπ,ωπ<ωb≤2ωπ,
∴ωπ≤2kπ+$\frac{π}{2}$<2ωπ且ωπ<2kπ+$\frac{π}{2}$≤2ωπ,
∴ωπ<2kπ+$\frac{π}{2}$<2ωπ,
∵ω为正实数,∴k=0时,ωπ<$\frac{π}{2}$<2ωπ,解得$\frac{1}{4}$<ω<$\frac{1}{2}$,
k=1时,ωπ<$\frac{5π}{2}$<2ωπ,解得$\frac{5}{4}$<ω<$\frac{5}{2}$,
k=2时,ωπ<$\frac{9}{2}$<2ωπ,解得$\frac{9}{4}$<ω<$\frac{9}{2}$,
k=3时,ωπ<$\frac{13π}{2}$<2ωπ,解得$\frac{13}{4}$<ω<$\frac{13}{2}$,

综上可得ω的取值范围为($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{5}{4}$,+∞)
故答案为:($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{5}{4}$,+∞)

点评 本题考查三角函数的值域,涉及不等式的性质和分类讨论的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知cosθ=$\frac{5}{13}$,θ∈(π,2π),求sin($θ-\frac{π}{6}$),cos($θ-\frac{π}{6}$)及tan($θ-\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}满足a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$,n∈N*,求a100,S2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x3-3x2cosθ+$\frac{3}{16}$cosθ其中x∈R,θ为参数,且0≤θ≤2π.
(1)当cosθ=0时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2(x+a)-2(a∈R)在x=2处取得极值.
(1)求实数a的值;
(2)求函数f(x)的单调区间,并指出其单调性;
(3)求函数f(x)在[-1,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若一个n面体有m个面时直角三角形,则称这个n面体的直度为$\frac{m}{n}$,则四面体A1-ABC的直度的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,点P的极坐标为(2,$\frac{π}{6}$),曲线C的极坐标方程为ρ2+2ρsinθ=3.
(1)写出点P的直角坐标及曲线C的直角坐标方程;
(2)若Q为C上的动点,求PQ的中点M到直线l:$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x>0,y>0,且$\frac{1}{x+1}+\frac{9}{y}$=1,则4x+y的最小值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三角形ABC中,A、B、C所对的边分别为a,b,c;若A=$\frac{π}{3}$,则$a(cosC+\sqrt{3}sinC)$=(  )
A.a+bB.a+cC.b+cD.a+b+c

查看答案和解析>>

同步练习册答案