精英家教网 > 高中数学 > 题目详情

【题目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可归纳出对任意角度θ都成立的一个等式,并予以证明.

【答案】解:根据各式的共同特点可得:等式左边余弦均为正弦度数加30°,右边是常数

则具有一般规律的等式:sin2θ+cos2(θ+30°)+sinθcos(θ+30°)=

证明:等式的左边=sin2θ+cos(θ+30°)[cos(θ+30°)+sinθ]

=sin2θ+( cosθ﹣ sinθ)( +sinθ)

=sin2θ+(

= = =右边,

∴等式成立.


【解析】根据所给的等式归纳:等式左边余弦均为正弦度数加30°,右边是常数,按照此规律写出一般性的结论,利用两角和的余弦公式等进行证明等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在( n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象与轴交于点,周期是

(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;

(2)已知点,点是该函数图象上一点,点的中点,当 时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10 000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9],其频率分布直方图如图所示.

(1)直方图中的a=_____;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性,并证明.

(2)若,求的值.

(3)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是(
A.0, ,0,0,
B.0.1,0.2,0.3,0.4
C.p,1﹣p(0≤p≤1)
D. ,…,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)当时,若对任意的,总存在,使成立,求实数的取值范围;

(3)若的值域为区间,是否存在常数,使区间的长度为?若存在,求出的值;若不存在,请说明理由.(注:区间的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (θ为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为( ),过点M的直线l与曲线C相交于A,B两点,若|MA|=2|MB|,求AB的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电脑游戏中,“主角的生存机会往往被预先设定,如某枪战游戏中,“主角被设定生存机会5,每次生存承受射击8(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为主角耗用生存机会的过程设计一个算法,并画出程序框图.

查看答案和解析>>

同步练习册答案