精英家教网 > 高中数学 > 题目详情

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

【答案】1)要使倾斜后容器内的溶液不会溢出,的最大值是45°(2)不能实现要求,详见解析

【解析】

1)当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.

2)当时,设剩余的液面为,比较60°的大小后发现上,计算此时倒出的液体体积,比小,从而得出结论.

1)如图,当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.

解法一:此时,梯形的面积等于

因为,所以

,解得

所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°

      ③

解法二:此时,的面积等于图中没有液体部分的面积,即

因为,所以

,即

解得

所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°

2)如图,当时,设上液面为,因为,所以点F在线段上,

       ④

此时,

剩余溶液的体积为

由题意,原来溶液的体积为

因为,所以倒出的溶液不满

所以,要倒出不少于的溶液,当时,不能实现要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棋盘上标有第站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;

2)证明:

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,堑堵意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而阳马指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a>0a≠1)是奇函数.

1)求常数k的值;

2)若已知f1=,且函数在区间[1+∞])上的最小值为—2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定圆,动圆过点且与圆相切,记圆心的轨迹为.

1)求轨迹的方程;

2)设点上运动,关于原点对称,且,的面积最小时, 求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,且满足.

1)求抛物线的方程;

2)过抛物线上的任意一点作抛物线的切线,交抛物线的准线于点.轴上是否存在一个定点,使以为直径的圆恒过.若存在,求出的坐标,若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件;

C.若随机变量服从二项分布:,

D.的充分不必要条件.

查看答案和解析>>

同步练习册答案