精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线焦点为,点ABC为该抛物线上不同的三点,且满足.

(1)求

(2)若直线轴于点,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)写出焦点及三点坐标,利用,可得三点坐标间的关系,再根据抛物线的定义将到焦点的距离转化为到准线的距离,可求得;(2)设出直线方程,将直线方程与抛物线联立利用根与系数的关系,可得的取值范围.

试题解析:

由抛物线得焦点坐标为

所以 ,

所以由

(1)抛物线的准线方程为

由抛物线定义得:

所以 .

(2)显然直线斜率存在,设为,则直线方程为

联立消去

所以,即....................... ...................

,所以

代入式子又点也在抛物线上,

所以,即.....................................

可解得

又当时,直线过点,此时三点共线,由

共线,即点也在直线上,此时点必与之一重合,

不满足点为该抛物线上不同的三点,所以

所以实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,各棱长均相等, 分别为棱 的中点.

(Ⅰ)证明: 平面

(Ⅱ)若三棱柱为直棱柱,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;

②做n次随机试验,事件A发生m,则事件A发生的频率就是事件A的概率;

③百分率是频率,但不是概率;

④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;

⑤频率是概率的近似值,概率是频率的稳定值.

其中正确的是____(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上顶点为,右顶点为,离心率 为坐标原点,圆 与直线相切.

(1)求椭圆的标准方程;

(2)直线 )与椭圆相交于两不同点,若椭圆上一点满足,求面积的最大值及此时的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的 都有.

(1)用函数单调性的定义证明: 在定义域上为增函数;

(2)若,求的取值范围;

(3)若不等式对所有的 都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(Ⅰ)判断函数零点的个数,并说明理由;

(Ⅱ)记,讨论的单调性;

(Ⅲ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在唯一的零点,且,则实数_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立坐标系,已知点的直角坐标为,若直线的极坐标方程为.曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求.

查看答案和解析>>

同步练习册答案