精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积
(1)详见解析,(2)详见解析,(3)

试题分析:(1)证线面平行找线线平行,本题有中点条件,可利用中位线性质.即DM∥AP,写定理条件时需完整,因为若缺少DM面APC,,则DM可能在面PAC内,若缺少AP面APC,则DM与面PAC位置关系不定.(2)证面面垂直关键找线面垂直.可由面面垂直性质定理探讨,因为BC垂直AC,而AC为两平面的交线,所以应有BC垂直于平面PAC,这就是本题证明的首要目标.因为BC垂直AC,因此只需证明BC垂直平面PAC另一条直线.这又要利用线面垂直与线线垂直关系转化.首先将题目中等量关系转化为垂直条件,即DM⊥PB,从而有PA⊥PB,而PA⊥PC,所以PA⊥面PBC,因此PA⊥BC.(3)求锥的体积关键找出高,有(2)有PA⊥面PBC,因此DM为高,利用体积公式可求得
试题解析:(1)D为AB中点,M为PB中点
DM∥AP
DM面APC,AP面APC
DM∥面PAC
(2)△PDB是正三角形,M为PB中点
DM⊥PB,又DM∥AP,PA⊥PB
PA⊥PC,PBPC=P,PA⊥面PBC
BC面PBC,PA⊥BC
∠ACB=90°,BC⊥AC
ACPA=A,BC⊥面PAC
BC面ABC,面PAC⊥面ABC
(3)AB=20,D为AB中点,AP⊥面PBC
PD=10
△PDB为正三角形,DM=5
BC=4,PB=10,PC=2
S△PBC=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2011•山东)如图,在四棱台ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成60°的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.
 
(1)求证://侧面;
(2)求平面与底面所成锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。

(1)求证:平面
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,

(1)求证:平面.
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体的棱长为a,M、N分别为和AC上的点,,则MN与平面的位置关系是(    )
A.相交B.平行C.垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面。下列四个命题正确的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD的棱长为1,其中线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是(    )
A.[0,]B.[]
C.[]D.[]

查看答案和解析>>

同步练习册答案