精英家教网 > 高中数学 > 题目详情
2.在直角坐标系中,P点的坐标为($\frac{3}{5}$,$\frac{4}{5}$),Q是第三象限内一点,|OQ|=1且∠POQ=$\frac{3π}{4}$,则Q点的横坐标为-$\frac{7\sqrt{2}}{10}$.

分析 设∠xOP=α,根据三角函数的坐标法定义,得到α的三角函数值,然后利用三角函数公式求Q的横坐标.

解答 解:设∠xOP=α,则cosα=$\frac{3}{5}$,sinα=$\frac{4}{5}$,
∴Q点的横坐标为cos($α+\frac{3}{4}π$)=-$\frac{\sqrt{2}}{2}$cosα-$\frac{\sqrt{2}}{2}$sinα=-$\frac{7\sqrt{2}}{10}$;
故答案为:-$\frac{7\sqrt{2}}{10}$.

点评 本题考查了三角函数的坐标法定义以及三角函数公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题中,真命题是(  )
A.如果a>b,那么ac2>bc2B.如果a>b,那么a2>b2
C.如果a>b,ab>0,那么$\frac{1}{a}<\frac{1}{b}$D.如果x≠0,那么$x+\frac{1}{x}≥2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f′(x)是函数f(x)在R上的导函数,函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若2cos(θ-$\frac{π}{3}$)=3cosθ,则tan2θ=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于平面向量,给出下列四个命题:
①单位向量的模都相等;
②对任意的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,式子|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定成立;
③两个有共同的起点且相等的向量,其终点必定相同;
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.
其中正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠BAC=45°,∠ABC=60°,O为三角形的外心,以线段OB,OC为邻边作平行四边形,第四个顶点为D,再以OA,OD为邻边作平行四边形,它的第四个顶点为H.
(1)设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{OH}$;
(2)用向量法证明:AH⊥BC;
(3)若△ABC的外接圆半径为$\sqrt{2}$,求OH的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是(  )
A.0.3B.0.55C.0.75D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知Sn是等差数列{an}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0;②S4029>0;③S4030<0;④数列{Sn}中的最大项为S2015;⑤|a2015|>|a2016|.
其中正确结论的序号是②④⑤.(写出所有正结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用0,3,4,5,6这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数共有(  )
A.28B.30C.36D.20

查看答案和解析>>

同步练习册答案