精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上任意一点P,若F是椭圆的一个焦点,则|PF|的取值范围是(  )
A.[4,5]B.(4,5)C.(2,8)D.[2,8]

分析 利用a-c≤|PF|≤a+c,即可得出.

解答 解:由椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1可得:a=5,b=4,c=3.
∴a-c≤|PF|≤a+c,
即2≤|PF|≤8.
∴|PF|的取值范围是[2,8],
故选:D.

点评 本题考查了椭圆与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.中华超市某种原珠笔每支单价为0.9元,则销售额y(元)关于销售量x(支)的函数关系式是y=0.9x,定义域为x∈N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC中,已知点D在BC边上,AD•sin∠C+AC•sin∠ADC=DC•sin∠DAC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,AD=3.
(1)求证:△ADC是直角三角形;
(2)求△ABD的面积及BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinα=$\frac{2}{3}$,cosβ=-$\frac{3}{4}$,且α、β都是第二象限角,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tanα=3,且α是第一象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)对任意非零实数a和b恒成立,求实数x的取值范围.
(2)设函数$f(x)=(2{log_4}x-\frac{1}{2})$,若f(x)≥mlog4x对于任意x∈[4,16]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若α是第二象限角,则sin (sinα),sin (cosα),cos (sinα),cos (cosα)中正数的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e|x|+x2,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.椭圆2x2+3y2=1的焦点坐标为$(±\frac{{\sqrt{6}}}{6},0)$.

查看答案和解析>>

同步练习册答案